

Quantipy: Python survey data toolkit

Quantipy is an open-source data processing, analysis and reporting software
project that builds on the excellent pandas [http://pandas.pydata.org/]
and numpy [http://www.numpy.org/] libraries. Aimed at social and marketing research survey data, Quantipy offers support for native handling of special data types like multiple choice variables, statistical analysis using case or observation weights, dataset metadata and customizable reporting exports.

Note

We are currently moving our documentation and reorganizing it. Sorry for the
lack of latest information.

 Release notes

Release notes

	Latest (09/04/2019)

	Archived release notes
	sd (14/01/2019)

	sd (26/10/2018)

	sd (01/10/2018)

	sd (04/06/2018)

	sd (04/04/2018)

	sd (27/02/2018)

	sd (12/01/2018)

	sd (18/12/2017)

	sd (28/11/2017)

	sd (13/11/2017)

	sd (17/10/2017)

	sd (15/09/2017)

	sd (31/08/2017)

	sd (24/07/2017)

	sd (08/06/2017)

	sd (17/05/2017)

	sd (04/05/2017)

	sd (24/04/2017)

	sd (06/04/2017)

	sd (29/03/2017)

	sd (20/03/2017)

	sd (07/03/2017)

	sd (24/02/2017)

	sd (16/02/2017)

	sd (04/01/2017)

	sd (8/12/2016)

	sd (23/11/2016)

	sd (16/11/2016)

	sd (11/11/2016)

	sd (09/11/2016)

 Latest (09/04/2019)

Latest (09/04/2019)

New Nesting in Batch.add_crossbreak()

Nested crossbreaks can be defined for Excel deliverables, the nesting can be
defined by "var1 > var2". Nesting in more than two levels is available
"var1 > var2 > var3 > ...", but nesting a group of variables is NOT supported
“var1 > (var2, var3)”.

New Leveling

Running Batch.level(array, levels={}) gives the option to aggregate leveled
arrays. If no levels are provided, automatically the Batch.yks are taken.

New DataSet.used_text_keys()

This new method loops over text objects in DataSet._meta and returns
all found text_keys.

Update Batch (transposed) summaries

As announced a while ago, Batch.make_summaries() is fully deprecated now
and gives a NotImplementedError. Per default, all arrays in the downbreak
list are added to the Batch.x_y_map. The array exclusive functionality
(add array, but skip items) is now supported by the new method
Batch.exclusive_arrays().

Additionally Batch.transpose_array() is deprecated. Instead
Batch.transpose() is available, which does not support replace anymore,
because the “normal” arrays needs to be included always. If the summaries are
not requested in the deliverables, they can be hidden in the ChainManager.

 Archived release notes

Archived release notes

sd (14/01/2019)

New: Chain.export() / assign() and custom calculations

Expanding on the current Chain editing features provided via cut()
and join(), it is now possible to calculate additional row and column results using plain pandas.dataframe methods. Use Chain.export() to work on a simplified Chain.dataframe and assign() to rebuild it properly when finished.

New: Batch.as_main(keep=True) to change qp.Batch relations

It is now possible to promote an .additional Batch to a main/regular one. Optionally, the original parent Batch can be erased by setting keep=False. Example:

Starting from:

>>> dataset.batches(main=True, add=False)
['batch 2', 'batch 5']

>>> dataset.batches(main=False, add=True)
['batch 4', 'batch 3', 'batch 1']

We turn batch 3 into a normal one:

>>> b = dataset.get_batch('batch 3')
>>> b.as_main()

>>> dataset.batches(main=True, add=False)
['batch 2', 'batch 5', 'batch 3']

>>> dataset.batches(main=False, add=True)
['batch 4', 'batch 1']

New: On-the-fly rebasing via Quantity.normalize(on='y', per_cell=False)

Quantipy’s engine will now accept another variable’s base for (column) percentage
computations. Furthermore, it is possible to rebase the percentages to the cell
frequencies of the other variable’s cross-tabulation by setting per_cell=True,
i.e. rebase variables with identical categories to their respective per-category results. The following example shows how 'A1' results are serving as cell bases
for the percentages of 'A2':

>>> l = stack[stack.keys()[0]]['no_filter']['A1']['datasource']
>>> q = qp.Quantity(l)
>>> q.count()
Question datasource
Values All 1 2 3 4 5 6
Question Values
A1 All 6984.0 767.0 1238.0 2126.0 836.0 1012.0 1005.0
 1 1141.0 503.0 78.0 109.0 102.0 155.0 194.0
 2 2716.0 615.0 406.0 499.0 499.0 394.0 303.0
 3 1732.0 603.0 89.0 128.0 101.0 404.0 407.0
 4 5391.0 644.0 798.0 1681.0 655.0 796.0 817.0
 5 4408.0 593.0 177.0 1649.0 321.0 818.0 850.0
 6 3584.0 615.0 834.0 834.0 327.0 507.0 467.0
 7 4250.0 588.0 724.0 1717.0 540.0 55.0 626.0
 8 3729.0 413.0 1014.0 788.0 311.0 539.0 664.0
 9 3575.0 496.0 975.0 270.0 699.0 230.0 905.0
 10 4074.0 582.0 910.0 1148.0 298.0 861.0 275.0
 11 2200.0 446.0 749.0 431.0 177.0 146.0 251.0
 12 5554.0 612.0 987.0 1653.0 551.0 860.0 891.0
 13 544.0 40.0 107.0 232.0 87.0 52.0 26.0

>>> l = stack[stack.keys()[0]]['no_filter']['A2']['datasource']
>>> q = qp.Quantity(l)
>>> q.count()
Question datasource
Values All 1 2 3 4 5 6
Question Values
A2 All 6440.0 727.0 1131.0 1894.0 749.0 960.0 979.0
 1 568.0 306.0 34.0 32.0 48.0 63.0 85.0
 2 1135.0 417.0 107.0 88.0 213.0 175.0 135.0
 3 975.0 426.0 43.0 49.0 49.0 220.0 188.0
 4 2473.0 350.0 267.0 599.0 431.0 404.0 422.0
 5 2013.0 299.0 88.0 573.0 162.0 417.0 474.0
 6 1174.0 342.0 219.0 183.0 127.0 135.0 168.0
 7 1841.0 355.0 161.0 754.0 285.0 21.0 265.0
 8 1740.0 265.0 376.0 327.0 160.0 212.0 400.0
 9 1584.0 181.0 390.0 89.0 398.0 94.0 432.0
 10 1655.0 257.0 356.0 340.0 137.0 443.0 122.0
 11 766.0 201.0 241.0 101.0 76.0 53.0 94.0
 12 2438.0 217.0 528.0 497.0 247.0 459.0 490.0
 13 1532.0 72.0 286.0 685.0 118.0 183.0 188.0

>>> q.normalize(on='A1', per_cell=True)
Question datasource
Values All 1 2 3 4 5 6
Question Values
A2 All 92.210767 94.784876 91.357027 89.087488 89.593301 94.861660 97.412935
 1 49.780894 60.834990 43.589744 29.357798 47.058824 40.645161 43.814433
 2 41.789396 67.804878 26.354680 17.635271 42.685371 44.416244 44.554455
 3 56.293303 70.646766 48.314607 38.281250 48.514851 54.455446 46.191646
 4 45.872751 54.347826 33.458647 35.633551 65.801527 50.753769 51.652387
 5 45.666969 50.421585 49.717514 34.748332 50.467290 50.977995 55.764706
 6 32.756696 55.609756 26.258993 21.942446 38.837920 26.627219 35.974304
 7 43.317647 60.374150 22.237569 43.913803 52.777778 38.181818 42.332268
 8 46.661303 64.164649 37.080868 41.497462 51.446945 39.332096 60.240964
 9 44.307692 36.491935 40.000000 32.962963 56.938484 40.869565 47.734807
 10 40.623466 44.158076 39.120879 29.616725 45.973154 51.451800 44.363636
 11 34.818182 45.067265 32.176235 23.433875 42.937853 36.301370 37.450199
 12 43.896291 35.457516 53.495441 30.066546 44.827586 53.372093 54.994388
 13 281.617647 180.000000 267.289720 295.258621 135.632184 351.923077 723.076923

New: DataSet.missings(name=None)

This new method returns the missing data definition for the provided variable or
all missing definitions found in the dataset (if name is omitted).

>>> dataset.missings()
{u'q10': {u'exclude': [6]},
 u'q11': {u'exclude': [977]},
 u'q17': {u'exclude': [977]},
 u'q23_1_new': {u'exclude': [8]},
 u'q25': {u'exclude': [977]},
 u'q32': {u'exclude': [977]},
 u'q38': {u'exclude': [977]},
 u'q39': {u'exclude': [977]},
 u'q48': {u'exclude': [977]},
 u'q5': {u'exclude': [977]},
 u'q9': {u'exclude': [977]}}

Update: DataSet.batches(main=True, add=False)

The collection of Batch sets can be separated by main and additional
ones (see above) to make analyzing Batch setups and relations easier. The default is still to return all Batch names.

Bugfix: Stack, other_source statistics failing for delimited sets

A bug that prevented other_source statistics being computed on delimited set type variables has been resolved by adjusting the underlying data type checking mechanic.

sd (26/10/2018)

New: Filter variables in DataSet and Batch

To avoid complex logics stored in the background and resulting problem with
json serializing, the filter concept in DataSet and Batch has changed.

Now actual variables are added to the data and meta, which have the property
recoded_filter. The values of depend on the included logic, and all logics
summarized in the value 0: keep. Because of the an easy logic can be used
at several places in qp: {'filter_var': 0}

DataSet methods

All included filters of a Dataset can be shown running dataset.filters().

A filter variable can be easily created:

dataset.add_filter_var(name, logic, overwrite=False)

	name is the name of the new filter-variable.

	logic should be (a list of) dictionaries in form of:

>>> {
... 'label': 'reason',
... 'logic': {var: keys} / intersection/
... }

or stings (var_name), which are automatically transformed into the following dict

>>> {
... 'label': 'var_name not empty',
... 'logic': {var_name: not_count(0)}
... }

If a list is provided, each item results in an own value of the filter
variable.

An existing filter variable can also be extended:

dataset.extend_filter_var(name, logic, extend_as=None)

	name is the name of the existing filter-variable.

	logic should be the same as above, then additional categories are added
to the filter and the 0 value is recalculated.

	extend_as determines if a new filter var is created or the initial
variable is modified.
If extend_as=None the variable is modified inplace. Otherwise
extend_as is used as suffix for the new filter variable.

Known methods like:

.copy()
.drop()
.rename()

can be applied on filter-variables, all others are not valid!

Batch methods

Batch.add_filter(filter_name, filter_logic=None, overwrite=False)

A filter can still be added to a batch, by adding a filter_logic, but also
it’s possible to add only the filter_name of an existing filter variable.
If filter_name is an existing filter-variable, a filter_logic is provided
and overwrite is turned off, the scripts will return an error.

Batch.remove_filter()

This method only removes filters from the Batch definitions, the created
filter-variables still exist in the belonging DataSet object.

Batch methods that use filters:

.extend_filter()
.add_y_on_y()
.add_open_ends()

create new extended filter variables if the used filter differs from the
batch global filter. So it’s recommended to add the global filter first, it’s
taken over automatically for the mentioned methods.

New: Summarizing and rearranging qp.Chain elements via ChainManager

	cut(values, ci=None, base=False, tests=False)

	join(title='Summary')

It is now possible to summarize View aggregation results from existing Chain
items by restructuring and editing them via their ChainManager methods. The
general idea behind building a summary Chain is to unify a set of results into
items by restructuring and editing them via their ChainManager methods. The
general idea behind building a summary Chain is to unify a set of results into
one cohesive representation to offer an easy way to look at certain key figures
of interest in comparison to each other. To achieve this, the ChainManager class
has gained the new cut() and join() methods. Summaries are built post-
aggregation and therefore rely on what has been defined (via the qp.Batch
class) and computed (via the qp.Stack methods) at previous stages.

The intended way of working with this new feature can be outlined as

	reorder()

	cut()

	join()

	insert()

In more detail:

A) Grouping the results for the summary

Both methods will operate on the entire set of Chains collected in a
ChainManager, so building a summary Chain will normally start with
restricting a copy of an existing ChainManager to the question variables
that you’re interested in. This can be done via clone() with
reorder(..., inplace=True) or by assigning back the new instance from
reorder(..., inplace=False).

B) Selecting View results via cut()

This method lets you target the kind of results (nets, means, NPS scores,
only the frequencies, etc.) from a given qp.Chain.dataframe. Elements must
be targeted by their underlying regular index values, e.g. 'net_1', 'net_2',
'mean', 1, 'calc', … . Use the base and tests parameters
to also carry over the matching base rows and/or significance testing results.
The ci parameter additionally allows targeting only the 'counts' or
'c%' results if cell items are grouped together.

C) Unifying the individual results with join()

Merging all new results into one, the join() method concatenates vertically
and relabels the x-axis to separate all variable results by their matching
metadata text that has also been applied while creating the regular set of
and relabels the x-axis to separate all variable results by their matching
metadata text that has has also been applied while creating the regular set of
Chain items. The new summary can then also be inserted back into its
originating ChainManager with insert() if desired.

Update: Batch.add_variables(varlist)

A qp.Batch can now carry a collection of variables that is explicitly not
directed towards any table-like builds. Variables from varlist will solely
be used in non-aggregation based, data transformation and export oriented
applications. To make this distinction more visible in the API, add_x() and
add_y() have been renamed to add_downbreak() and add_crossbreak().
Users are warned and advised to switch to the new method versions via a
DeprecationWarning. In a future version of the library add_x() and
add_y() will be removed.

Update: Batch.copy() -> Batch.clone()

Since qp.Batch is a subclass of qp.DataSet, the copy() method is renamed into
Batch.clone().

sd (01/10/2018)

New: “rewrite” of Rules module (affecting sorting):

sorting “normal” columns:

	sort_on always ‘@’

	fix any categories

	sort_by_weight default is unweighted (None), but each weight (included

in data) can be used

If sort_by_weight and the view-weight differ, a warning is shown.

sorting “expanded net” columns:

	sort_on always ‘@’

	fix any categories

	sorting within or between net groups is available

	sort_by_weight: as default the weight of the first found

expanded-net-view is taken. Only weights of aggregated net-views are possible

sorting “array summaries”:

	sort_on can be any desc (‘median’, ‘stddev’, ‘sem’, ‘max’, ‘min’,

‘mean’, ‘upper_q’, ‘lower_q’) or nets (‘net_1’, ‘net_2’, …. enumerated
by the net_def)
* sort_by_weight: as default the weight of the first found desc/net-view
is taken. Only weights of aggregated desc/net-views are possible
* sort_on can also be any category, here each weight can be used to sort_on

New: DataSet.min_value_count()

A new wrapper for DataSet.hiding() is included. All values are hidden,
that have less counts than the included number min.
The used data can be weighted or filtered using the parameters weight and
condition.

Usage as Batch method:
Batch.min_value_count() without the parameters weight and
condition automatically grabs Batch.weights[0] and Batch.filter
to calculate low value counts.

New: Prevent weak duplicated in data

As Python is case sensitive it is possible to have two or more variables with
the same name, but in lower- and uppercases. Most other software do not support
that, so a warning is shown if a weak dupe is created. Additionally
Dataset.write_dimensions() performs auto-renaming is weak dupes are detected.

New: Prevent single-cat delimited sets

DataSet.add_meta(..., qtype='delimited set', categories=[...], ...)
automatically switches qtype to single if only one category is defined.
DataSet.convert(name, 'single') allows conversion from delimited set to
single if the variable has only one category.
DataSet.repair() and DataSt.remove_values() convert delimited sets
automatically to singles if only one category is included.

Update: merge warnings + merging delimites sets

Warnings in hmerge() and vmerge() are updated. If a column exists in
the left and the right dataset, the type is compared. Some type inconsistencies
are allowed, but return a warning, while others end up in a raise.

delimited sets in vmerge():

If a column is a delimited set in the left dataset, but a single, int or float
in the right dataset, the data of the right column is converted into a delimited
set.

delimited sets in hmerge(...merge_existing=None):

For the hmerge a new parameter merge_existing is included, which can be
None, a list of variable-names or 'all'.

If delimited sets are included in left and right dataset:

	merge_existing=None: Only meta is adjusted. Data is untouched (left data

is taken).
* merge_existing='all': Meta and data are merged for all delimited sets,
that are included in both datasets.
* merge_existing=[variable-names]: Meta and data are merged for all
delimited sets, that are listed and included in both datasets.

Update: encoding in DataSet.get_batch(name)

The method is not that encoding sensitive anymore. It returns the depending
Batch, no matter if '...', u'...' or '...'.decode('utf8') is
included as name.

Update: warning in weight engine

Missing codes in the sample are only alerted, if the belonging target is not 0.

Update: DataSet.to_array(..., variables, ...)

Duplicated vars in variables are not allowed anymore, these were causing
problems in the ChainManager class.

Update: Batch.add_open_ends()

Method raises an error if no vars are included in oe and break_by. The
empty dataframe was causing issues in the ChainManager class.

Update: Batch.extend_x()

The method automatically checks if the included variables are arrays and adds
them to Batch.summaries if they are included yet.

sd (04/06/2018)

New: Additional variable (names) “getter”-like and resolver methods

	DataSet.created()

	DataSet.find(str_tags=None, suffixed=False)

	DataSet.names()

	DataSet.resolve_name()

A bunch of new methods enhancing the options of finding and testing for variable
names have been added. created() will list all variables that have been added
to a dataset using core functions, i.e. add_meta() and derive(), resp.
all helper methods that use them internally (as band() or categorize() do
for instance).

The find() method is returning all variable names that contain any of the
provided substrings in str_tags. To only consider names that end with these
strings, set suffixed=True. If no str_tags are passed, the method will
use a default list of tags including ['_rc', '_net', ' (categories', ' (NET', '_rec'].

Sometimes a dataset might contain “semi-duplicated” names, variables that differ
in respect to case sensitivity but have otherwise identical names. Calling
names() will report such cases in a pd.DataFrame that lists all name
variants under the respective str.lower() version. If no semi-duplicates
are found, names() will simply return DataSet.variables().

Lastly, resolve_name() can be used to return the “proper”, existing representation(s) of a given variable name’s spelling.

New: Batch.remove()

Not needed batches can be removed from meta, so they are not aggregated
anymore.

New: Batch.rename(new_name)

Sometimes standard batches have long/ complex names. They can now be changed
into a custom name. Please take into account, that for most hubs the name of
omnibus batches should look like ‘client ~ topic’.

Update: Handling verbatims in qp.Batch

Instead of holding the well prepared open-end dataframe in batch.verbatims,
the attribute is now filled by batch.add_open_ends() with instructions to
create the open-end dataframe. It is easier to to modify/ overwrite existing
verbatims. Therefore also a new parameter is included overwrite=True.

Update: Batch.copy(..., b_filter=None, as_addition=False)

It is now possible to define an additional filter for a copied batch and also
to set it as addition to the master batch.

Update: Regrouping the variable list using DataSet.order(..., regroup=True)

A new parameter called regroup will instruct reordering all newly created
variables into their logical position of the dataset’s main variable order, i.e.
attempting to place derived variables after the originating ones.

Bugfix: add_meta() and duplicated categorical values codes

Providing duplicated numerical codes while attempting to create new metadata
using add_meta() will now correctly raise a ValueError to prevent
corrupting the DataSet.

>>> cats = [(1, 'A'), (2, 'B'), (3, 'C'), (3, 'D'), (2, 'AA')]
>>> dataset.add_meta('test_var', 'single', 'test label', cats)
ValueError: Cannot resolve category definition due to code duplicates: [2, 3]

sd (04/04/2018)

New: Emptiness handlers in DataSet and Batch classes

	DataSet.empty(name, condition=None)

	DataSet.empty_items(name, condition=None, by_name=True)

	DataSet.hide_empty_items(condition=None, arrays=None)

	Batch.hide_empty(xks=True, summaries=True)

empty() is used to test if regular variables are completely empty,
empty_items() checks the same for the items of an array mask definition.
Both can be run on lists of variables. If a single variable is tested, the former
returns simply boolean, the latter will list all empty items. If lists are checked,
empty() returns the sublist of empty variables, empty_items() is mapping
the list of empty items per array name. The condition parameter of these
methods takes a Quantipy logic expression to restrict the test to a subset
of the data, i.e. to check if variables will be empty if the dataset is filtered
a certain way. A very simple example:

>>> dataset.add_meta('test_var', 'int', 'Variable is empty')
>>> dataset.empty('test_var')
True

>>> dataset[dataset.take({'gender': 1}), 'test_var'] = 1
>>> dataset.empty('test_var')
False

>>> dataset.empty('test_var', {'gender': 2})
True

The DataSet method hide_empty_items() uses the emptiness tests to
automatically apply a hiding rule on all empty items found in the dataset.
To restrict this to specific arrays only, their names can be provided via the
arrays argument. Batch.hide_empty() takes into account the current
Batch.filter setup and by drops/hides all relevant empty variables from the
xks list and summary aggregations by default. Summaries that would end up without valid
items because of this are automatically removed from the summaries collection
and the user is warned.

New: qp.set_option('fast_stack_filters', True)

A new option to enable a more efficient test for already existing filters
inside the qp.Stack object has been added. Set the 'fast_stack_filters'
option to True to use it, the default is False to ensure compatibility
in different versions of production DP template workspaces.

Update: Stack.add_stats(..., factor_labels=True, ...)

The parameter factor_labels is now also able to take the string '()',
then factors are written in the normal brackets next to the label (instead
of []).

In the new version factor_labels are also just added if there are none included
before, except new scales are used.

Bugfix: DataSet np.NaN insertion to delimited_set variables

np.NaN was incorrectly transformed when inserted into delimited_set
before, leading to either numpy type conflicts or type casting exceptions.
This is now fixed.

sd (27/02/2018)

New: DataSet._dimensions_suffix

DataSet has a new attribute _dimensions_suffix, which is used as mask
suffix while running DataSet.dimensionize(). The default is _grid and
it can be modified with DataSet.set_dim_suffix().

Update: Stack._get_chain() (old chain)

The method is speeded-up. If a filter is already included in the Stack, it is
not calculated from scratch anymore. Additionally the method has a new parameter
described, which takes a describing dataframe of the Stack, so it no longer
needs to be calculated in each loop.

Nets that are applied on array variables will now also create a new recoded
array that reflects the net definitions if recoded is used. The
method has been creating only the item versions before.

Update: Stack.add_stats()

The method will now create a new metadata property called 'factor' for each
variable it is applied on. You can only have one factor assigned to one
categorical value, so for multiple statistic definitions (exclusions, etc.)
it will get overwritten.

Update: DataSet.from_batch() (additions parameter)

The additions parameter has been updated to also be able to create recoded
variables from existing “additional” Batches that are attached to a parent one.
Filter variables will get the new meta 'properties' tag 'recoded_filter'
and only have one category (1, 'active'). They are named simply
'filter_1', 'filter_2' and so on. The new possible values of the
parameters are now:

	None: as_addition()-Batches are not considered.

	'variables': Only cross- and downbreak variables are considered.

	'filters': Only filters are recoded.

	'full': 'variables' + 'filters'

Bugfix: ViewManager._request_views()

Cumulative sums are only requested if they are included in the belonging
Stack. Additionally the correct related sig-tests are now taken for
cumulative sums.

sd (12/01/2018)

New: Audit

Audit is a new class which takes DataSet instances, compares and aligns
them.

The class compares/ reports/ aligns the following aspects:

	datasets are valid (DataSet.validate())

	mismatches (variables are not included in all datasets)

	different types (variables are in more than one dataset, but have different types)

	labels (variables are in more than one dataset, but have different labels for the same text_key)

	value codes (variables are in more than one dataset, but have different value codes)

	value texts (variables are in more than one dataset, but have different value texts)

	array items (arrays are in more than one dataset, but have different items)

	item labels (arrays are in more than one dataset, but their items have different labels)

This is the first draft of the class, so it will need some testing and probably
adjustments.

New: DataSet.reorder_items(name, new_order)

The new method reorders the items of the included array. The ints in the
new_order list match up to the number of the items
(DataSet.item_no('item_name')), not to the position.

New: DataSet.valid_tks, Arabic

Arabic (ar-AR) is included as default valid text-key.

New: DataSet.extend_items(name, ext_items, text_key=None)

The new method extends the items of an existing array.

Update: DataSet.set_missings()

The method is now limited to DataSet, Batch does not inherit it.

Update: DataSet

The whole class is reordered and cleaned up. Some new deprecation warnings
will appear.

Update: DataSet.add_meta() / DataSet.derive()

Both methods will now raise a ValueError: Duplicated codes provided. Value codes must be unique!
if categorical values definitions try to apply duplicated codes.

sd (18/12/2017)

New: Batch.remove_filter()

Removes all defined (global + extended) filters from a Batch instance.

Update: Batch.add_filter()

It’s now possible to extend the global filter of a Batch instance. These options
are possible.

Add first filter:

>>> batch.filter, batch.filter_names
'no_filter', ['no_filter']
>>> batch.add_filter('filter1', logic1)
>>> batch.filter, batch.filter_names
{'filter1': logic1}, ['filter1']

Extend filter:

>>> batch.filter, batch.filter_names
{'filter1': logic}, ['filter1']
>>> batch.add_filter('filter2', logic2)
>>> batch.filter, batch.filter_names
{'filter1' + 'filter2': intersection([logic1, logic2])}, ['filter1' + 'filter2']

Replace filter:

>>> batch.filter, batch.filter_names
{'filter1': logic}, ['filter1']
>>> batch.add_filter('filter1', logic2)
>>> batch.filter, batch.filter_names
{'filter1': logic2}, ['filter1']

Update: Stack.add_stats(..., recode)

The new parameter recode defines if a new numerical variable is created which
satisfies the stat definitions.

Update: DataSet.populate()

A progress tracker is added to this method.

Bugfix: Batch.add_open_ends()

= is removed from all responsess in the included variables, as it causes
errors in the Excel-Painter.

Bugfix: Batch.extend_x() and Batch.extend_y()

Check if included variables exist and unroll included masks.

Bugfix: Stack.add_nets(..., calc)

If the operator in calc is div/ /, the calculation is now performed
correctly.

sd (28/11/2017)

New DataSet.from_batch()

Creates a new DataSet instance out of Batch definitions (xks, yks,
filter, weight, language, additions, edits).

New: Batch.add_total()

Defines if total column @ should be included in the downbreaks (yks).

New: Batch.set_unwgt_counts()

If cellitems are cp and a weight is provided, it is possible to request
unweighted count views (percentages are still weighted).

Update: Batch.add_y_on_y(name, y_filter=None, main_filter='extend')

Multiple y_on_y aggregations can now be added to a Batch instance
and each can have an own filter. The y_on_y-filter can extend or replace
the main_filter of the Batch.

Update: Stack.add_nets(..., recode)

The new parameter recode defines if a new variable is created which
satisfies the net definitions. Different options for recode are:

	'extend_codes': The new variable contains all codes of the original
variable and all nets as new categories.

	'drop_codes': The new variable contains only all nets as new categories.

	'collect_codes' or 'collect_codes@cat_name': The new variable contains
all nets as new categories and another new category which sums all cases that
are not in any net. The new category text can be defined by adding @cat_name
to collect_codes. If none is provided Other is used as default.

Update: Stack.add_nets()

If a variable in the Stack already has a net_view, it gets overwritten
if a new net is added.

Update: DataSet.set_missings(..., missing_map)

The parameter missing_map can also handle lists now. All included
codes are be flagged as 'exclude'.

Update: request_views(..., sums='mid') (ViewManager/query.py)

Allow different positions for sums in the view-order. They can be placed in
the middle ('mid') between the basics/ nets and the stats or at the
'bottom' after the stats.

Update/ New: write_dimensions()

Converting qp data to mdd and ddf files by using write_dimensions() is
updated now. A bug regarding encoding texts is fixed and additionally all
included text_keys in the meta are transferred into the mdd. Therefore
two new classes are included: DimLabels and DimLabel.

sd (13/11/2017)

	New ``DataSet.to_delimited_set(name, label, variables,

	from_dichotomous=True, codes_from_name=True)``

Creates a new delimited set variable out of other variables. If the input-
variables are dichotomous (from_dichotomous), the new value-codes can be
taken from the variable-names or from the order of the variables
(codes_from_name).

Update Stack.aggregate(..., bases={})

A dictionary in form of:

bases = {
 'cbase': {
 'wgt': True,
 'unwgt': False},
 'cbase_gross': {
 'wgt': True,
 'unwgt': True},
 'ebase': {
 'wgt': False,
 'unwgt': False}
 }

defines what kind of bases will be aggregated. If bases is provided the
old parameter unweighted_base and any bases in the parameter views
will be ignored. If bases is not provided and any base is included in views,
a dictionary is automatically created out of views and unweighted_base.

sd (17/10/2017)

New: del DataSet['var_name'] and 'var_name' in DataSet syntax support

It is now possible to test membership of a variable name simply using the in
operator instead of DataSet.var_exists('var_name') and delete a variable definition
from DataSet using the del keyword inplace of the drop('var_name')
method.

New: DataSet.is_single(name), .is_delimited_set(name), .is_int(name), .is_float(name), .is_string(name), .is_date(name), .is_array(name)

These new methods make testing a variable’s type easy.

Update: DataSet.singles(array_items=True) and all other non-array type iterators

It is now possible to exclude array items from singles(), delimited_sets(),
ints() and floats() variable lists by setting the new array_items
parameter to False.

Update: Batch.set_sigtests(..., flags=None, test_total=None), Batch.sigproperties

The significancetest-settings for flagging and testing against total, can now
be modified by the two parameters flags and test_total. The Batch
attribute siglevels is removed, instead all sig-settings are stored
in Batch.sigproperties.

Update: Batch.make_summaries(..., exclusive=False), Batch.skip_items

The new parameter exclusive can take a list of arrays or a boolean. If a list
is included, these arrays are added to Batch.skip_items, if it is True all
variables from Batch.summaries are added to Batch.skip_items

Update: quantipy.sandbox.sandbox.Chain.paint(..., totalize=True)

If totalize is True, @-Total columns of a (x-oriented) Chain.dataframe
will be painted as 'Total' instead of showing the corresponsing x-variables
question text.

Update: quantipy.core.weights.Rim.Rake

The weighting algorithm’s generate_report() method can be caught up in a
MemoryError for complex weight schemes run on very large sample sizes. This
is now prevented to ensure the weight factors are computed with priority and
the algorithm is able to terminate correctly. A warning is raised:

UserWarning: OOM: Could not finish writing report...

Update: Batch.replace_y()

Conditional replacements of y-variables of a Batch will now always also
automatically add the @-Total indicator if not provided.

Bugfix: DataSet.force_texts(..., overwrite=True)

Forced overwriting of existing text_key meta data was failing for array
mask objects. This is now solved.

sd (15/09/2017)

New: DataSet.meta_to_json(key=None, collection=None)

The new method allows saving parts of the metadata as a json file. The parameters
key and collection define the metaobject which will be saved.

New: DataSet.save() and DataSet.revert()

These two new methods are useful in interactive sessions like Ipython or
Jupyter notebooks. save() will make a temporary (only im memory, not
written to disk) copy of the DataSet and store its current state. You can
then use revert() to rollback to that snapshot of the data at a later
stage (e.g. a complex recode operation went wrong, reloading from the physical files takes
too long…).

New: DataSet.by_type(types=None)

The by_type() method is replacing the soon to be deprecated implementation
of variables() (see below). It provides the same functionality
(pd.DataFrame summary of variable types) as the latter.

Update: DataSet.variables() absorbs list_variables() and variables_from_set()

In conjunction with the addition of by_type(), variables() is
replacing the related list_variables() and variables_from_set() methods in order to offer a unified solution for querying the DataSet’s (main) variable collection.

Update: Batch.as_addition()

The possibility to add multiple cell item iterations of one Batch definition
via that method has been reintroduced (it was working by accident in previous
versions with subtle side effects and then removed). Have fun!

Update: Batch.add_open_ends()

The method will now raise an Exception if called on a Batch that has
been added to a parent one via as_addition() to warn the user and prevent
errors at the build stage:

NotImplementedError: Cannot add open end DataFrames to as_addition()-Batches!

sd (31/08/2017)

New: DataSet.code_from_label(..., exact=True)

The new parameter exact is implemented. If exact=True codes are returned
whose belonging label is equal the included text_label. Otherwise the
method checks if the labels contain the included text_label.

New: DataSet.order(new_order=None, reposition=None)

This new method can be used to change the global order of the DataSet
variables. You can either pass a complete new_order list of variable names to
set the order or provide a list of dictionaries to move (multiple) variables
before a reference variable name. The order is reflected in the case data
pd.DataFrame.columns order and the meta 'data file' set object’s items.

New: DataSet.dichotomize(name, value_texts=None, keep_variable_text=True, ignore=None, replace=False, text_key=None)

Use this to convert a 'delimited set' variable into a set of binary coded
'single' variables. Variables will have the values 1/0 and by default use
'Yes' / 'No' as the corresponding labels. Use the value_texts
parameter to apply custom labels.

New: Batch.extend_x(ext_xks)

The new method enables an easy extension of Batch.xks. In ext_xks
included str are added at the end of Batch.xks. Values of included
dicts are positioned in front of the related key.

Update: Batch.extend_y(ext_yks, ...)

The parameter ext_yks now also takes dicts, which define the position
of the additional yks.

Update: Batch.add_open_ends(..., replacements)

The new parameter replacements is implemented. The method loops over the
whole pd.DataFrame and replaces all keys of the included dict
with the belonging value.

Update: Stack.add_stats(..., other_source)

Statistic views can now be added to delimited sets if other_source is used.
In this case other_source must be a single or numerical variable.

Update: DataSet.validate(..., spss_limits=False)

The new parameter spss_limits is implemented. If spss_limits=True, the
validate output dataframe is extended by 3 columns which show if the SPSS label
limitations are satisfied.

Bugfix: DataSet.convert()

A bug that prevented conversions from single to numeric types has been fixed.

Bugfix: DataSet.add_meta()

A bug that prevented the creation of numerical arrays outside of to.array()
has been fixed. It is now possible to create array metadata without providing
category references.

Bugfix: Stack.add_stats()

Checking the statistic views is skipped now if no single typed variables are
included even if a checking cluster is provided.

Bugfix: Batch.copy()

Instead of using a deepcopy of the Batch instance, a new instance is created
and filled with the attributes of the initial one. Then the copied instance can
be used as additional Batch.

Bugfix: qp.core.builds.powerpoint

Access to bar-chart series and colour-filling is now working for
different Powerpoint versions. Also a bug is fixed which came up in
PowerPointpainter() for variables which have fixed categories and whose
values are located in lib.

sd (24/07/2017)

New: qp.set_option()

It is now possible to set library-wide settings registered in qp.OPTIONS
by providing the setting’s name (key) and the desired value. Currently supported
are:

OPTIONS = {
 'new_rules': False,
 'new_chains': False,
 'short_item_texts': False
}

So for example, to work with the currently refactored Chain interim class
we can use qp.set_options('new_chains', True).

New: qp.Batch()

This is a new object aimed at defining and structuring aggregation and build
setups. Please see an extensive overview here.

New: Stack.aggregate() / add_nets() / add_stats() / add_tests() / …

Connected to the new Batch class, some new Stack methods to ease up
view creation have been added. You can find the docs here.

New: DataSet.populate()

Use this to create a qp.Stack from Batch definitions. This connects the
Batch and Stack objects; check out the Batch
and Analysis & aggregation docs.

New: DataSet.write_dimensions(path_mdd=None, path_ddf=None, text_key=None, mdm_lang='ENG', run=True, clean_up=True)

It is now possible to directly convert a DataSet into a Dimensions .ddf/.mdd
file pair (given SPSS Data Collection Base Professional is installed on your
machine). By default, files will be saved to the same location in that the
DataSet resides and keep its text_key.

New: DataSet.repair()

This new method can be used to try to fix common DataSet metadata problems
stemming from outdated versions, incorrect manual editing of the meta dictionary
or other inconsistencies. The method is checking and repairing following issues:

	'name' is present for all variable metadata

	'source' and 'subtype' references for array variables

	correct 'lib'-based 'values' object for array variables

	text key-dependent 'x edits' / 'y edits' meta data

	['data file']['items'] set entries exist in 'columns' / 'masks'

New: DataSet.subset(variables=None, from_set=None, inplace=False)

As a counterpart to filter(), subset() can be used to create a new
DataSet that contains only a selection of variables. The new variables
collection can be provided either as a list of names or by naming an already
existing set containing the desired variables.

New: DataSet.variables_from_set(setname)

Get the list of variables belonging to the passed set indicated by
setname.

New: DataSet.is_like_numeric(name)

A new method to test if all of a string variable’s values can be converted
to a numerical (int / float) type. Returns a boolean True / False.

Update: DataSet.convert()

It is now possible to convert inplace from string to int / float if
the respective internal is_like_numeric() check identifies numeric-like values.

Update: DataSet.from_components(..., reset=True), DataSet.read_quantipy(..., reset=True)

Loaded .json metadata dictionaries will get cleaned now by default from any
user-defined, non-native objects inside the 'lib' and 'sets'
collections. Set reset=False to keep any extra entires (restoring the old
behaviour).

Update: DataSet.from_components(data_df, meta_dict=None, ...)

It is now possible to create a DataSet instance by providing a pd.DataFrame
alone, without any accompanying meta data. While reading in the case data, the meta
component will be created by inferring the proper Quantipy variable types
from the pandas dtype information.

Update: Quantity.swap(var, ..., update_axis_def=True)

It is now possible to swap() the 'x' variable of an array based Quantity,
as long as the length oh the constructing 'items' collection is identical.
In addition, the new parameter update_axis_def is now by default enforcing
an update of the axis defintions (pd.DataFrame column names, etc) while
previously the method was keeping the original index and column names. The old
behaviour can be restored by setting the parameter to False.

Array example:

>>> link = stack[name_data]['no_filter']['q5']['@']
>>> q = qp.Quantity(link)
>>> q.summarize()
Array q5
Questions q5_1 q5_2 q5_3 q5_4 q5_5 q5_6
Question Values
q5 All 8255.000000 8255.000000 8255.000000 8255.000000 8255.000000 8255.000000
 mean 26.410297 22.260569 25.181466 39.842883 24.399758 28.972017
 stddev 40.415559 38.060583 40.018463 46.012205 40.537497 41.903322
 min 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
 25% 3.000000 3.000000 3.000000 3.000000 1.000000 3.000000
 median 5.000000 3.000000 3.000000 5.000000 3.000000 5.000000
 75% 5.000000 5.000000 5.000000 98.000000 5.000000 97.000000
 max 98.000000 98.000000 98.000000 98.000000 98.000000 98.000000

Updated axis definiton:

>>> q.swap('q7', update_axis_def=True)
>>> q.summarize()
Array q7
Questions q7_1 q7_2 q7_3 q7_4 q7_5 q7_6
Question Values
q7 All 1195.000000 1413.000000 3378.000000 35.000000 43.000000 36.000000
 mean 5.782427 5.423213 5.795145 4.228571 4.558140 5.333333
 stddev 2.277894 2.157226 2.366247 2.073442 2.322789 2.552310
 min 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
 25% 4.000000 4.000000 4.000000 3.000000 3.000000 3.000000
 median 6.000000 6.000000 6.000000 4.000000 4.000000 6.000000
 75% 8.000000 7.000000 8.000000 6.000000 6.000000 7.750000
 max 9.000000 9.000000 9.000000 8.000000 9.000000 9.000000

Original axis definiton:

>>> q = qp.Quantity(link)
>>> q.swap('q7', update_axis_def=False)
>>> q.summarize()
Array q5
Questions q5_1 q5_2 q5_3 q5_4 q5_5 q5_6
Question Values
q5 All 1195.000000 1413.000000 3378.000000 35.000000 43.000000 36.000000
 mean 5.782427 5.423213 5.795145 4.228571 4.558140 5.333333
 stddev 2.277894 2.157226 2.366247 2.073442 2.322789 2.552310
 min 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
 25% 4.000000 4.000000 4.000000 3.000000 3.000000 3.000000
 median 6.000000 6.000000 6.000000 4.000000 4.000000 6.000000
 75% 8.000000 7.000000 8.000000 6.000000 6.000000 7.750000
 max 9.000000 9.000000 9.000000 8.000000 9.000000 9.000000

Update: DataSet.merge_texts()

The method will now always overwrite existing text_key meta, which makes it
possible to merge texts from meta of the same text_key as the master
DataSet.

Bugfix: DataSet.band()

band(new_name=None)’s automatic name generation was incorrectly creating
new variables with the name None_banded. This is now fixed.

Bugfix: DataSet.copy()

The method will now check if the name of the copy already exists in the
DataSet and drop the referenced variable if found to prevent
inconsistencies. Additionally, it is not longer possible to copy isolated
array items:

>>> dataset.copy('q5_1')
NotImplementedError: Cannot make isolated copy of array item 'q5_1'. Please copy array variable 'q5' instead!

sd (08/06/2017)

New: DataSet.extend_valid_tks(), DataSet.valid_tks

DataSet has a new attribute valid_tks that contains a list of all valid
textkeys. All methods that take a textkey as parameter are checked against that
list.

If a datafile contains a special/ unusual textkey (for example 'id-ID' or
'zh-TW'), the list can be extended with DataSet.extend_valid_tks().
This extension can also be used to create a textkey for special conditions,
for example to create texts only for powerpoint outputs:

>>> dataset.extend_valid_tks('pptx')
>>> dataset.force_texts('pptx', 'en-GB')
>>> dataset.set_variable_text('gender','Gender label for pptx', text_key='pptx')

New: Equal error messages

All methods that use the parameters name/var, text_key or
axis_edit/ axis now have a decorator that checks the provided values.
The following shows a few examples for the new error messages:

name & var:

'name' argument for meta() must be in ['columns', 'masks'].
q1 is not in ['columns', 'masks'].

text_key:

'en-gb' is not a valid text_key! Supported are: ['en-GB', 'da-DK', 'fi-FI', 'nb-NO', 'sv-SE', 'de-DE']

axis_edit & axis:

'xs' is not a valid axis! Supported are: ['x', 'y']

New: DataSet.repair_text_edits(text_key)

This new method can be used in trackers, that were drawn up in an older Quantipy
version. Text objects can be repaired if are not well prepared, for example if
it looks like this:

{'en-GB': 'some English text',
 'sv_SE': 'some Swedish text',
 'x edits': 'new text'}

DataSet.repair_text_edits() loops over all text objects in the dataset and
matches the x edits and y edits texts to all included textkeys:

>>> dataset.repair_text_edits(['en-GB', 'sv-SE'])
{'en-GB': 'some English text',
 'sv_SE': 'some Swedish text',
 'x edits': {'en-GB': new text', 'sv-SE': 'new text'}}

Update: DataSet.meta()/ .text()/ .values()/ .value_texts()/ .items()/ .item_texts()

All these methods now can take the parameters text_key and axis_edit.
The related text is taken from the meta information and shown in the output.
If a text key or axis edit is not included the text is returned as None.

Update: DataSet.compare(dataset, variables=None, strict=False, text_key=None)

The method is totally updated, works more precise and contains a few new
features. Generally variables included in dataset are compared with
eponymous variables in the main DataSet instance. You can specify witch
variables should be compared, if question/ value texts should be compared
strict or not and for which text_key.

Update: DataSet.validate(verbose=True)

A few new features are tested now and the output has changed. Set verbose=True
to see the definitions of the different error columns:

name: column/mask name and meta[collection][var]['name'] are not identical

q_label: text object is badly formated or has empty text mapping

values: categorical var does not contain values, value text is badly
formated or has empty text mapping

textkeys: dataset.text_key is not included or existing tks are not
consistent (also for parents)

source: parents or items do not exist

codes: codes in .data are not included in .meta

Update: DataSet.sorting() / .slicing() / .hiding()

These methods will now also work on lists of variable names.

Update: DataSet.set_variable_text(), Dataset.set_item_texts()

If these methods are applied to an array item, the new variable text is also
included in the meta information of the parent array. The same works also the
other way around, if an array text is set, then the array item texts are modified.

Update: DataSet.__init__(self, name, dimensions_comp=True)

A few new features are included to handle data coming from Crunch. While
initializing a new DataSet instance dimensions compatibility can be set to
False. In the custom template use t.get_qp_dataset(name, dim_comp=False)
in the load cells.

Bugfix: DataSet.hmerge()

If right_on and left_on are used and right_on is also included in
the main file, it is not overwritten any more.

sd (17/05/2017)

Update: DataSet.set_variable_text(..., axis_edit=None), DataSet.set_value_texts(..., axis_edit=False)

The new axis_edit argument can be used with one of 'x', 'y' or ['x', 'y'] to instruct a text metadata change that will only be visible in build exports.

Warning

In a future version set_col_text_edit() and set_val_text_text() will
be removed! The identical functionality is provided via this axis_edit parameter.

 How-to-snippets

How-to-snippets

	DataSet Dimensions compatibility
	The compatibility mode

	Accessing and creating array data

	Different ways of creating categorical values

	Derotation
	What is derotation

	How to use DataSet.derotate()

	What about arrays?

 DataSet Dimensions compatibility

DataSet Dimensions compatibility

DTO-downloaded and Dimensions converted variable naming conventions are following
specific rules for array names and corresponding ìtems. DataSet
offers a compatibility mode for Dimensions scenarios and handles the proper
renaming automatically. Here is what you should know…

The compatibility mode

A DataSet will (by default) support Dimensions-like array naming for its connected data files when constructed. An array masks meta defintition
of a variable called q5 looking like this…:

{u'items': [{u'source': u'columns@q5_1', u'text': {u'en-GB': u'Surfing'}},
 {u'source': u'columns@q5_2', u'text': {u'en-GB': u'Snowboarding'}},
 {u'source': u'columns@q5_3', u'text': {u'en-GB': u'Kite boarding'}},
 {u'source': u'columns@q5_4', u'text': {u'en-GB': u'Parachuting'}},
 {u'source': u'columns@q5_5', u'text': {u'en-GB': u'Cave diving'}},
 {u'source': u'columns@q5_6', u'text': {u'en-GB': u'Windsurfing'}}],
 u'subtype': u'single',
 u'text': {u'en-GB': u'How likely are you to do each of the following in the next year?'},
 u'type': u'array',
 u'values': u'lib@values@q5'}

…will be converted into its “Dimensions equivalent” as per:

>>> dataset = qp.DataSet(name_data, dimensions_comp=True)
>>> dataset.read_quantipy(path_data+name_data, path_data+name_data)
DataSet: ../Data/Quantipy/Example Data (A)
rows: 8255 - columns: 75
Dimensions compatibilty mode: True

>>> dataset.masks()
['q5.q5_grid', 'q6.q6_grid', 'q7.q7_grid']

>>> dataset._meta['masks']['q5.q5_grid']
{u'items': [{u'source': 'columns@q5[{q5_1}].q5_grid',
 u'text': {u'en-GB': u'Surfing'}},
 {u'source': 'columns@q5[{q5_2}].q5_grid',
 u'text': {u'en-GB': u'Snowboarding'}},
 {u'source': 'columns@q5[{q5_3}].q5_grid',
 u'text': {u'en-GB': u'Kite boarding'}},
 {u'source': 'columns@q5[{q5_4}].q5_grid',
 u'text': {u'en-GB': u'Parachuting'}},
 {u'source': 'columns@q5[{q5_5}].q5_grid',
 u'text': {u'en-GB': u'Cave diving'}},
 {u'source': 'columns@q5[{q5_6}].q5_grid',
 u'text': {u'en-GB': u'Windsurfing'}}],
 'name': 'q5.q5_grid',
 u'subtype': u'single',
 u'text': {u'en-GB': u'How likely are you to do each of the following in the next year?'},
 u'type': u'array',
 u'values': 'lib@values@q5.q5_grid'}

Accessing and creating array data

Since new names are converted automatically by DataSet methods, there is
no need to write down the full (DTO-like) Dimensions array name when adding
new metadata. However, querying variables is always requiring the proper name:

>>> name, qtype, label = 'array_var', 'single', 'ARRAY LABEL'
>>> cats = ['A', 'B', 'C']
>>> items = ['1', '2', '3']
>>> dataset.add_meta(name, qtype, label, cats, items)

>>> dataset.masks()
['q5.q5_grid', 'array_var.array_var_grid', 'q6.q6_grid', 'q7.q7_grid']

>>> dataset.meta('array_var.array_var_grid')
single items item texts codes texts missing
array_var.array_var_grid: ARRAY LABEL
1 array_var[{array_var_1}].array_var_grid 1 1 A None
2 array_var[{array_var_2}].array_var_grid 2 2 B None
3 array_var[{array_var_3}].array_var_grid 3 3 C None

>>> dataset['array_var.array_var_grid'].head(5)
 array_var[{array_var_1}].array_var_grid array_var[{array_var_2}].array_var_grid array_var[{array_var_3}].array_var_grid
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN

As can been seen above, both the masks name as well as the array item
elements are being properly converted to match DTO/Dimensions
conventions.

When using rename(), copy() or transpose(), the same behaviour
applies:

>>> dataset.rename('q6.q6_grid', 'q6new')
>>> dataset.masks()
['q5.q5_grid', 'array_var.array_var_grid', 'q6new.q6new_grid', 'q7.q7_grid']

>>> dataset.copy('q6new.q6new_grid', suffix='q6copy')
>>> dataset.masks()
['q5.q5_grid', 'q6new_q6copy.q6new_q6copy_grid', 'array_var.array_var_grid', 'q6new.q6new_grid', 'q7.q7_grid']

>>> dataset.transpose('q6new_q6copy.q6new_q6copy_grid')
>>> dataset.masks()
['q5.q5_grid', 'q6new_q6copy_trans.q6new_q6copy_trans_grid', 'q6new_q6copy.q6new_q6copy_grid', 'array_var.array_var_grid', 'q6new.q6new_grid', 'q7.q7_grid']

 Different ways of creating categorical values

Different ways of creating categorical values

The DataSet methods add_meta(), extend_values() and derive()
offer three alternatives for specifying the categorical values of 'single'
and 'delimited set' typed variables. The approaches differ with respect to
how the mapping of numerical value codes to value text labels is handled.

(1) Providing a list of text labels

By providing the category labels only as a list of str, DataSet
is going to create the numerical codes by simple enumeration:

>>> name, qtype, label = 'test_var', 'single', 'The test variable label'

>>> cats = ['test_cat_1', 'test_cat_2', 'test_cat_3']
>>> dataset.add_meta(name, qtype, label, cats)

>>> dataset.meta('test_var')
single codes texts missing
test_var: The test variable label
1 1 test_cat_1 None
2 2 test_cat_2 None
3 3 test_cat_3 None

(2) Providing a list of numerical codes

If only the desired numerical codes are provided, the label information for all
categories consequently will appear blank. In such a case the user will, however,
get reminded to add the 'text' meta in a separate step:

>>> cats = [1, 2, 98]
>>> dataset.add_meta(name, qtype, label, cats)
...\\quantipy\core\dataset.py:1287: UserWarning: 'text' label information missing,
only numerical codes created for the values object. Remember to add value 'text' metadata manually!

>>> dataset.meta('test_var')
single codes texts missing
test_var: The test variable label
1 1 None
2 2 None
3 98 None

(3) Pairing numerical codes with text labels

To explicitly assign codes to corresponding labels, categories can also be
defined as a list of tuples of codes and labels:

>>> cats = [(1, 'test_cat_1') (2, 'test_cat_2'), (98, 'Don\'t know')]
>>> dataset.add_meta(name, qtype, label, cats)

>>> dataset.meta('test_var')
single codes texts missing
test_var: The test variable label
1 1 test_cat_1 None
2 2 test_cat_2 None
3 98 Don't know None

Note

All three approaches are also valid for defining the items object for
array-typed masks.

 Derotation

Derotation

What is derotation

Derotation of data is necessary if brands, products or something similar
(levels) are assessed and each respondent (case) rates a different
selection of that levels. So each case has several responses.
Derotation now means, that the data is switched from case-level to
responses-level.

Example: q1_1/q1_2: On a scale from 1 to 10, how much do you like the
following drinks?

1: water

2: cola

3: lemonade

4: beer

``data``

	id

	drink_1

	drink_2

	q1_1

	q1_2

	gender

	case1

	1

	3

	2

	8

	1

	case2

	1

	4

	9

	5

	2

	case3

	2

	4

	6

	10

	1

derotated ``data``

	
	drink

	drink_levelled

	q1

	gender

	case1

	1

	1

	2

	1

	case1

	2

	3

	8

	1

	case2

	1

	1

	9

	2

	case2

	2

	4

	5

	2

	case3

	1

	2

	6

	1

	case3

	2

	4

	10

	1

To identify which case rates which levels, some key-/level-variables are
included in the data, in this example drink_1 and drink_2.
Variables (for example gender) that are not included to this loop can also
be added.

How to use DataSet.derotate()

The DataSet method takes a few parameters:

	levels: dict of list

Contains all key-/level-variables and the name for the new levelled variable.
All key-/level-variables must have the same value_map.

>>> levels = {'drink': ['drink_1', 'drink_2']}

	mapper: list of dicts of list

Contains the looped questions and the new column name to which the
looped questions will be combinded.

>>> mapper = [{'q1': ['q1_1', 'q1_2']}]

	other: str or list of str

Contains all variables that should be assumed to the derotated data, but
which are not included in the loop.

>>> other = 'gender'

	unique_key: str

Name of varibale that identifies cases in the initial data.

>>> unique_key = 'id'

	dropna: bool, default True

If a case rates less then the possible counts of levels, these responses
will be droped.

>>> ds = dataset.derotate(levels = {'drink': ['drink_1', 'drink_2']},
... mapper = [{'q1': ['q1_1', 'q1_2']}],
... other = 'gender',
... unique_key = 'id',
... dropna = True)

What about arrays?

It is possible that also arrays are looped. In this case a mapper can look
like this:

>>> mapper = [{'q12_1': ['q12a[{q12a_1}].q12a_grid', 'q12b[{q12b_1}].q12b_grid',
... 'q12c[{q12c_1}].q12c_grid', 'q12d[{q12d_1}].q12d_grid']},
... {'q12_2': ['q12a[{q12a_2}].q12a_grid', 'q12b[{q12b_2}].q12b_grid',
... 'q12c[{q12c_2}].q12c_grid', 'q12d[{q12d_2}].q12d_grid']},
... {'q12_3': ['q12a[{q12a_3}].q12a_grid', 'q12b[{q12b_3}].q12b_grid',
... 'q12c[{q12c_3}].q12c_grid', 'q12d[{q12d_3}].q12d_grid']},
... {'q12_4': ['q12a[{q12a_4}].q12a_grid', 'q12b[{q12b_4}].q12b_grid',
... 'q12c[{q12c_4}].q12c_grid', 'q12d[{q12d_4}].q12d_grid']},
... {'q12_5': ['q12a[{q12a_5}].q12a_grid', 'q12b[{q12b_5}].q12b_grid',
... 'q12c[{q12c_5}].q12c_grid', 'q12d[{q12d_5}].q12d_grid']},
... {'q12_6': ['q12a[{q12a_6}].q12a_grid', 'q12b[{q12b_6}].q12b_grid',
... 'q12c[{q12c_6}].q12c_grid', 'q12d[{q12d_6}].q12d_grid']},
... {'q12_7': ['q12a[{q12a_7}].q12a_grid', 'q12b[{q12b_7}].q12b_grid',
... 'q12c[{q12c_7}].q12c_grid', 'q12d[{q12d_7}].q12d_grid']},
... {'q12_8': ['q12a[{q12a_8}].q12a_grid', 'q12b[{q12b_8}].q12b_grid',
... 'q12c[{q12c_8}].q12c_grid', 'q12d[{q12d_8}].q12d_grid']},
... {'q12_9': ['q12a[{q12a_9}].q12a_grid', 'q12b[{q12b_9}].q12b_grid',
... 'q12c[{q12c_9}].q12c_grid', 'q12d[{q12d_9}].q12d_grid']},
... {'q12_10': ['q12a[{q12a_10}].q12a_grid', 'q12b[{q12b_10}].q12b_grid',
... 'q12c[{q12c_10}].q12c_grid', 'q12d[{q12d_10}].q12d_grid']},
... {'q12_11': ['q12a[{q12a_11}].q12a_grid', 'q12b[{q12b_11}].q12b_grid',
... 'q12c[{q12c_11}].q12c_grid', 'q12d[{q12d_11}].q12d_grid']},
... {'q12_12': ['q12a[{q12a_12}].q12a_grid', 'q12b[{q12b_12}].q12b_grid',
... 'q12c[{q12c_12}].q12c_grid', 'q12d[{q12d_12}].q12d_grid']},
... {'q12_13': ['q12a[{q12a_13}].q12a_grid', 'q12b[{q12b_13}].q12b_grid',
... 'q12c[{q12c_13}].q12c_grid', 'q12d[{q12d_13}].q12d_grid']}]]

Can be also writen like this:

>>> for y in frange('1-13'):
... q_group = []
... for x in ['a', 'b', 'c', 'd']:
... var = 'q12{}'.format(x)
... var_grid = var + '[{' + var + '_{}'.format(y) + '}].' + var + '_grid'
... q_group.append(var_grid)
... mapper.append({'q12_{}'.format(y): q_group})

So the derotated dataset will lose its meta information about the
mask and only the columns q12_1 to q12_13 will be added. To
receive back the mask structure, use the method dataset.to_array():

>>> variables = [{'q12_1': u'label 1'},
... {'q12_2': u'label 2'},
... {'q12_3': u'label 3'},
... {'q12_4': u'label 4'},
... {'q12_5': u'label 5'},
... {'q12_6': u'label 6'},
... {'q12_7': u'label 7'},
... {'q12_8': u'label 8'},
... {'q12_9': u'label 9'},
... {'q12_10': u'label 10'},
... {'q12_11': u'label 11'},
... {'q12_12': u'label 12'},
... {'q12_13': u'label 13'}]
>>> ds.to_array('qTP', variables, 'Var_name')

variables can also be a list of variable-names, then the mask-items
will be named by its belonging columns.

arrays included in other will keep their meta structure.

 Data processing

Data processing

	DataSet components
	Case and meta data

	columns and masks objects

	Languages: text and text_key mappings

	Categorical values object

	The array type

	I/O
	Starting from native components
	Using a standalone pd.DataFrame

	.csv / .json pairs

	Third party conversions
	Supported conversions

	SPSS Statistics

	Dimensions

	Decipher

	Ascribe

	DataSet management
	Setting the variable order

	Cloning, filtering and subsetting

	Merging
	Vertical (cases/rows) merging

	Horizontal (variables/columns) merging

	Savepoints and state rollback

	Inspecting variables
	Querying and slicing case data

	Variable and value existence

	Variable types

	Slicing & dicing metadata objects

	Editing metadata
	Creating meta from scratch

	Renaming

	Changing & adding text info

	Extending the values object

	Reordering the values object

	Removing DataSet objects

	Transforming variables
	Copying

	Inplace type conversion

	Banding and categorization

	Array transformations

	Logic and set operaters
	Ranges

	Complex logic
	union

	intersection

	“List” logic

	has_any

	not_any

	has_all

	not_all

	has_count

	not_count

	Boolean slicers and code existence

	Custom data recoding
	The recode() method in detail
	target

	mapper

	default

	append

	intersect

	initialize

	fillna

	Custom recode examples
	Building a net code

	Create-and-fill

	Numerical banding

	Complicated segmentation

	Variable creation

	Adding derived variables

	Interlocking variables

	Condition-based code removal

 DataSet components

DataSet components

Case and meta data

Quantipy builds upon the pandas library to feature the DataFrame
and Series objects in the case data component of its DataSet object.
Additionally, each DataSet offers a metadata component to describe the
data columns and provide additional information on the characteristics of the
underlying structure. The metadata document is implemented as a nested dict
and provides the following keys on its first level:

	element

	contains

	'type'

	case data type

	'info'

	info on the source data

	'lib'

	shared use references

	'columns'

	info on DataFrame columns (Quantipy types, labels, etc.)

	'sets'

	ordered groups of variables pointing to other parts of the meta

	'masks'

	complex variable type definitions (arrays, dichotomous, etc.)

columns and masks objects

There are two variable collections inside a Quantipy metadata document:
'columns' is storing the meta for each accompanying pandas.DataFrame
column object, while 'masks' are building upon the regular 'columns'
metadata but additionally employ special meta instructions to define
complex data types. An example is the the 'array' type that (in MR speak) maps
multiple “question” variables to one “answer” object.

“Simple”” data definitons that are supported by Quantipy can either be numeric
'float' and 'int' types, categorical 'single' and 'delimited set'
variables or of type 'string', 'date' and 'time'.

Languages: text and text_key mappings

Throughout Quantipy metadata all label information, e.g. variable question
texts and category descriptions, are stored in text objects that are mapping
different language (or context) versions of a label to a specific text_key.
That way the metadata can support multi-language and multi-purpose (for example
detailed/extensive vs. short question texts) label information in a digestable
format that is easy to query:

>>> meta['columns']['q1']['text']
{'de-DE': 'Das ist ein langes deutsches Label',
 u'en-GB': u'What is your main fitness activity?',
 'x edits': {'de-DE': 'German build label', 'en-GB': 'English build label'}}

Valid text_key settings are:

	text_key

	Language / context

	'en-GB'

	English

	'de-DE'

	German

	'fr-FR'

	French

	'da-DK'

	Danish

	'sv-SV'

	Swedish

	'nb-NO'

	Norwegian

	'fi-FI'

	Finnish

	'x edits'

	Build label edit for x-axis

	'y edits'

	Build label edit for y-axis

Categorical values object

single and delimited set variables restrict the possible case data
entries to a list of values that consist of numeric answer codes and their
text labels, defining distinct categories:

>>> meta['columns']['q1']['values']
[{'value': 1,
 'text': {'en-GB': 'Dog'}
 },
 {'value': 2,
 'text': {'en-GB': 'Cat'}
 },
 {'value': 3,
 'text': {'en-GB': 'Bird'}
 },
 {'value': -9,
 'text': {'en-GB': 'Not an animal'}
 }]

The array type

Turning to the masks collection of the metadata, array variables
group together a collection of variables that share a common response options
scheme, i.e. different statements (usually referencing a broader topic) that
are answered using the same scale. In the Quantipy metadata document, an
array variable has a subtype that describes the type of the
constructing source variables listed in the items object. In contrast to simple variable types, any
categorical values metadata is stored inside the shared information collection
lib, for access from both the columns and masks representation of
array elements:

>>> meta['masks']['q5']
{u'items': [{u'source': u'columns@q5_1', u'text': {u'en-GB': u'Surfing'}},
 {u'source': u'columns@q5_2', u'text': {u'en-GB': u'Snowboarding'}},
 {u'source': u'columns@q5_3', u'text': {u'en-GB': u'Kite boarding'}},
 {u'source': u'columns@q5_4', u'text': {u'en-GB': u'Parachuting'}},
 {u'source': u'columns@q5_5', u'text': {u'en-GB': u'Cave diving'}},
 {u'source': u'columns@q5_6', u'text': {u'en-GB': u'Windsurfing'}}],
 u'name': u'q5',
 u'subtype': u'single',
 u'text': {u'en-GB': u'How likely are you to do each of the following in the next year?'},
 u'type': u'array',
 u'values': 'lib@values@q5'}

>>> meta['lib']['values']['q5']
[{u'text': {u'en-GB': u'I would refuse if asked'}, u'value': 1},
 {u'text': {u'en-GB': u'Very unlikely'}, u'value': 2},
 {u'text': {u'en-GB': u"Probably wouldn't"}, u'value': 3},
 {u'text': {u'en-GB': u'Probably would if asked'}, u'value': 4},
 {u'text': {u'en-GB': u'Very likely'}, u'value': 5},
 {u'text': {u'en-GB': u"I'm already planning to"}, u'value': 97},
 {u'text': {u'en-GB': u"Don't know"}, u'value': 98}]

Exploring the columns meta of an array item shows the same values reference pointer and informs about its parent meta structure, i.e. the
array’s masks defintion:

>>> meta['columns']['q5_1']
{u'name': u'q5_1',
 u'parent': {u'masks@q5': {u'type': u'array'}},
 u'text': {u'en-GB': u'How likely are you to do each of the following in the next year? - Surfing'},
 u'type': u'single',
 u'values': u'lib@values@q5'}

 I/O

I/O

Starting from native components

Using a standalone pd.DataFrame

Quantipy can create a meta document from a inferring its variable types from
the dtypes of a pd.DataFrame. In that process, ìnt, float and
string data types are created inside the meta component of the DataSet.
In this basic form, text label information is missing. For a example, given
a pd.DataFrame as per:

>>> casedata = [[1000, 10, 1.2, 'text1'],
... [1001, 4, 3.4, 'jjda'],
... [1002, 8, np.NaN, 'what?'],
... [1003, 8, 7.81, '---'],
... [1004, 5, 3.0, 'hello world!']]
>>> df = pd.DataFrame(casedata, columns=['identity', 'q1', 'q2', 'q3'])
>>> df
 identity q1 q2 q3
0 1000 10 1.20 text1
1 1001 4 3.40 jjda
2 1002 8 NaN what?
3 1003 8 7.81 ---
4 1004 5 3.00 hello world!

… the conversion is adding matching metadata to the DataSet instance:

>>> dataset = qp.DataSet(name='example', dimensions_comp=False)
>>> dataset.from_components(df)
Inferring meta data from pd.DataFrame.columns (4)...
identity: dtype: int64 - converted: int
q1: dtype: int64 - converted: int
q2: dtype: float64 - converted: float
q3: dtype: object - converted: string

>>> dataset.meta()['columns']['q2']
{'text': {'en-GB': ''}, 'type': 'float', 'name': 'q2', 'parent': {}, 'properties': {'created': True}}

.csv / .json pairs

We can easily read in Quantipy native data with the read_quantipy()
method and providing the paths to both the .csv and .json file (file
extensions are handled automatically), e.g.:

>>> folder = './Data/'
>>> file_name = 'Example Data (A)'
>>> path_csv = path_json = folder + file_name

>>> dataset = qp.DataSet(name='example', dimensions_comp=False)
>>> dataset.read_quantipy(path_json, path_csv)
DataSet: ./Data/example
rows: 8255 - columns: 76
Dimensions compatibility mode: False

We can that access the case and metadata components:

>>> dataset.data()['q4'].head()
0 1
1 2
2 2
3 1
4 1
Name: q4, dtype: int64

>>> meta = dataset.meta()['columns']['q4']
>>> json.dumps(meta)
{
 "values": [
 {
 "text": {
 "en-GB": "Yes"
 },
 "value": 1
 },
 {
 "text": {
 "en-GB": "No"
 },
 "value": 2
 }
],
 "text": {
 "en-GB": "Do you ever participate in sports activities with people in your household?"
 },
 "type": "single",
 "name": "q4",
 "parent": {}
}

Third party conversions

Supported conversions

In adddition to providing plain .csv/.json data (pairs), source files
can be read into Quantipy using a number of I/O functions to deal with
standard file formats encountered in the market research industry:

	Software

	Format

	Read

	Write

	SPSS
Statistics

	.sav

	Yes

	Yes

	SPSS
Dimensions

	.dff/.mdd

	Yes

	Yes

	Decipher

	tab-delimited
.json/ .txt

	Yes

	No

	Ascribe

	tab-delimited
.xml/ .txt

	Yes

	No

The following functions are designed to convert the different file formats’
structures into inputs understood by Quantipy.

SPSS Statistics

Reading:

>>> from quantipy.core.tools.dp.io import read_spss
>>> meta, data = read_spss(path_sav)

Note

On a Windows machine you MUST use ioLocale=None when reading
from SPSS. This means if you are using a Windows machine your base
example for reading from SPSS is
meta, data = read_spss(path_sav, ioLocale=None).

 DataSet management

DataSet management

Setting the variable order

The global variable order of a DataSet is dictated by the content of the
meta['sets']['data file']['items'] list and reflected in the structure of
the case data component’s pd.DataFrame.columns. There are two ways to set
a new order using the order(new_order=None, reposition=None) method:

Define a full order

Using this apporach requires that all DataSet variable names are passed
via the new_order parameter. Providing only a subset of the variables will
raise a ValueError:

>>> dataset.order(['q1', 'q8'])
ValueError: 'new_order' must contain all DataSet variables.

Text…

Change positions relatively

Often only a few changes to the natural order of the DataSet are necessary,
e.g. derived variables should be moved alongside their originating ones or specific
sets of variables (demographics, etc.) should be grouped together. We can achieve
this using the reposition parameter as follows:

Text…

Cloning, filtering and subsetting

Sometimes you want to cut the data into sections defined by either case/respondent conditions (e.g. a survey wave) or a collection of variables (e.g.
a specific part of the questionnaire). To not permanently change an existing
DataSet by accident, draw a copy of it first:

>>> copy_ds = dataset.clone()

Then you can use filter() to restrict cases (rows) or subset() to keep
only a selected range of variables (columns). Both methods can be used inplace
but will return a new object by default.

>>> keep = {'Wave': [1]}
>>> copy_ds.filter(alias='first wave', condition=keep, inplace=True)
>>> copy_ds._data.shape
(1621, 76)

After the filter has been applied, the DataSet is only showing cases that contain the value 1 in the 'Wave' variable. The filter alias (a short name
to describe the arbitrarily complex filter condition) is attached to the
instance:

>>> copy_ds.filtered
only first wave

We are now further reducing the DataSet by dropping all variables except the three array variables 'q5', 'q6', and 'q7' using subset().

>>> reduced_ds = copy_ds.subset(variables=['q5', 'q6', 'q7'])

We can see that only the requested variables (masks defintitions and the
constructing array items) remain in reduced_ds:

>>> reduced_ds.by_type()
size: 1621 single delimited set array int float string date time N/A
0 q5_1 q5
1 q5_2 q7
2 q5_3 q6
3 q5_4
4 q5_5
5 q5_6
6 q6_1
7 q6_2
8 q6_3
9 q7_1
10 q7_2
11 q7_3
12 q7_4
13 q7_5
14 q7_6

Merging

Intro text… As opposed to reducing an existing file…

Vertical (cases/rows) merging

Text

Horizontal (variables/columns) merging

Text

Savepoints and state rollback

When working with big DataSets and needing to perform a lot of data
preparation (deriving large amounts of new variables, lots of meta editing,
complex cleaning, …) it can be beneficial to quickly store a snapshot of a
clean and consistent state of the DataSet. This is most useful when working
in interactive sessions like IPython or Jupyter notebooks and might
prevent you from reloading files from disk or waiting for previous processes
to finish.

Savepoints are stored via save() and can be restored via revert().

Note

Savepoints only exists in memory and are not written to disk. Only one
savepoint can exist, so repeated save() calls will overwrite any previous
versions of the DataSet. To permanently save your data, please use one
of the write methods, e.g. write_quantipy().

 Inspecting variables

Inspecting variables

Querying and slicing case data

A qp.DataSet is mimicking pandas-like item access, i.e. passing a variable
name into the []-accessor will return a pandas.DataFrame view of the
case data component. That means that we can chain any pandas.DataFrame method to
the query:

>>> ds['q9'].head()
 q9
0 99;
1 1;4;
2 98;
3 1;4;
4 99;

There is the same support for selecting multiple variables at once:

>>> ds[['q9', 'gender']].head()
 q9 gender
0 99; 1
1 1;4; 2
2 98; 1
3 1;4; 1
4 99; 1

To integrate array (masks) variables into this behaviour, passing an
array name will automatically call its item list:

>>> ds['q6'].head()
 q6_1 q6_2 q6_3
0 1 1 1
1 1 NaN 1
2 1 NaN 2
3 2 NaN 2
4 2 10 10

This can be combined with the list-based selection as well:

>>> ds[['q6', 'q9', 'gender']].head()
 q6_1 q6_2 q6_3 q9 gender
0 1 1 1 99; 1
1 1 NaN 1 1;4; 2
2 1 NaN 2 98; 1
3 2 NaN 2 1;4; 1
4 2 10 10 99; 1

DataSet case data supports row-slicing based on complex logical conditions
to inspect subsets of the data. We can use the take() with a Quantipy
logic operation naturally for this:

>>> condition = intersection(
... [{'gender': [1]},
... {'religion': [3]},
... {'q9': [1, 4]}])
>>> take = ds.take(condition)

>>> ds[take, ['gender', 'religion', 'q9']].head()
 gender religion q9
52 1 3 1;2;4;
357 1 3 1;3;4;
671 1 3 1;3;4;
783 1 3 2;3;4;
802 1 3 4;

See also

Please find an overview of Quantipy logical operators and data slicing
and masking in the docs about complex logical conditions!

 Editing metadata

Editing metadata

Creating meta from scratch

It is very easy to add new variable metadata to a DataSet via add_meta()
which let’s you create all supported variable types. Each new variable needs at
least a name, qtype and label. With this information a string,
int, float or date variable can be defined, e.g.:

>>> ds.add_meta(name='new_int', qtype='int', label='My new int variable')
>>> ds.meta('new_int')
 int
new_int: My new int variable N/A

Using the categories parameter we can create categorical variables of type
single or delimited set. We can provide the categories in two
different ways:

>>> name, qtype, label = 'new_single', 'single', 'My new single variable'

Providing a list of category labels (codes will be enumerated starting
from 1):

>>> cats = ['Category A', 'Category B', 'Category C']

>>> ds.add_meta(name, qtype, label, categories=cats)
>>> ds.meta('new_single')
single codes texts missing
new_single: My new single variable
1 1 Category A None
2 2 Category B None
3 3 Category C None

Providing a list of tuples pairing codes and labels:

>>> cats = [(1, 'Category A'), (2, 'Category B'), (99, 'Category C')]

>>> ds.add_meta(name, qtype, label, categories=cats)
>>> ds.meta('new_single')
single codes texts missing
new_single: My new single variable
1 1 Category A None
2 2 Category B None
3 99 Category C None

Note

add_meta() is preventing you from adding ill-formed or
inconsistent variable information, e.g. it is not possible to add categories
to an int…

>>> ds.add_meta('new_int', 'int', 'My new int variable', cats)
ValueError: Numerical data of type int does not accept 'categories'.

…and you must provide categories when trying to add categorical data:

>>> ds.add_meta(name, 'single', label, categories=None)
ValueError: Must provide 'categories' when requesting data of type single.

 Transforming variables

Transforming variables

Copying

It’s often recommended to draw a clean copy of a variable before starting to
editing its meta or case data. With copy() you can add a copy to the
DataSet that is identical to the original in all respects but its name. By
default, the copy’s name will be suffixed with '_rec', but you can apply a
custom suffix by providing it via the suffix argument (leaving out the
'_' which is added automatically):

>>> ds.copy('q3')
>>> ds.copy('q3', suffix='version2')

>>> ds.delimited_sets
[u'q3', u'q2', u'q9', u'q8', u'q3_rec', u'q3_version2']

Querying the DataSet, we can see that all three version are looking identical:

>>> ds[['q3', 'q3_rec', 'q3_version2']].head()
 q3 q3_rec q3_version2
0 1;2;3; 1;2;3; 1;2;3;
1 1;2;3; 1;2;3; 1;2;3;
2 1;2;3; 1;2;3; 1;2;3;
3 1;3; 1;3; 1;3;
4 2; 2; 2;

We can, however, prevent copying the case data and simply add an “empty” copy
of the variable by passing copy_data=False:

>>> ds.copy('q3', suffix='no_data', copy_data=False)

>>> ds[['q3', 'q3_rec', 'q3_version2', 'q3_no_data']].head()
 q3 q3_rec q3_version2 q3_no_data
0 1;2;3; 1;2;3; 1;2;3; NaN
1 1;2;3; 1;2;3; 1;2;3; NaN
2 1;2;3; 1;2;3; 1;2;3; NaN
3 1;3; 1;3; 1;3; NaN
4 2; 2; 2; NaN

If we wanted to only copy a subset of the case data, we could also use a
logical slicer and supply it in the copy() operation’s
slicer parameter:

>>> slicer = {'gender': [1]}
>>> ds.copy('q3', suffix='only_men', copy_data=True, slicer=slicer)

>>> ds[['q3', 'gender', 'q3_only_men']].head()
 q3 gender q3_only_men
0 1;2;3; 1 1;2;3;
1 1;2;3; 2 NaN
2 1;2;3; 1 1;2;3;
3 1;3; 1 1;3;
4 2; 1 2;

Inplace type conversion

You can change the characteristics of existing DataSet variables by
converting from one type to another. Conversions happen inplace, i.e.
no copy of the variable is taken prior to the operation. Therefore, you might
want to take a DataSet.copy() before using the convert(name, to)
method.

Conversions need to modify both the meta and data component of the
DataSet and are limited to transformations that keep the original and new
state of a variable consistent. The following conversions are currently
supported:

	name (from-type)

	to='single'

	to='delimited set'

	to='int'

	to='float'

	to='string'

	'single'

	[X]

	X

	X

	X

	X

	'delimited set'

	
	[X]

	
	
	

	'int'

	X

	
	[X]

	X

	X

	'float'

	
	
	
	[X]

	X

	'string'

	X

	
	X*

	X*

	[X]

	'date'

	X

	
	
	
	X

* If all values of the variable are numerical, i.e. DataSet.is_like_numeric() returns True.

Each of these conversions will rebuild the variable meta data to match the to
type. This means, that for instance a variable that is single will lose
its values object when transforming to int, while the reverse operation
will create a values object that categorizes the unqiue numeric codes found in the
case data with their str representation as text meta. Consider the
variables q1 (single) and age (int):

From type single to int:

>>> ds.meta('q1')
single codes texts missing
q1: What is your main fitness activity?
1 1 Swimming None
2 2 Running/jogging None
3 3 Lifting weights None
4 4 Aerobics None
5 5 Yoga None
6 6 Pilates None
7 7 Football (soccer) None
8 8 Basketball None
9 9 Hockey None
10 96 Other None
11 98 I regularly change my fitness activity None
12 99 Not applicable - I don't exercise None

>>> ds.convert('q1', to='int')
>>> ds.meta('q1')
 int
q1: What is your main fitness activity? N/A

From type int to single:

>>> ds.meta('age')
 int
age: Age N/A

>>> ds.convert('age', to='single')
>>> ds.meta('age')
single codes texts missing
age: Age
1 19 19 None
2 20 20 None
3 21 21 None
4 22 22 None
5 23 23 None
6 24 24 None
7 25 25 None
8 26 26 None
9 27 27 None
10 28 28 None
11 29 29 None
12 30 30 None
13 31 31 None
14 32 32 None
15 33 33 None
16 34 34 None
17 35 35 None
18 36 36 None
19 37 37 None
20 38 38 None
21 39 39 None
22 40 40 None
23 41 41 None
24 42 42 None
25 43 43 None
26 44 44 None
27 45 45 None
28 46 46 None
29 47 47 None
30 48 48 None
31 49 49 None

Banding and categorization

In contrast to convert(), the categorize() method creates a new
variable of type single, acting as a short-hand for creating a renamed copy
and then type-transforming it. Therefore, it lets you quickly categorize
the unique values of a text, int or date variable, storing
values meta in the form of {'text': {'en-GB': str(1)}, 'value': 1}.

>>>

Flexible banding of numeric data is provided thorugh DataSet.band(): If a
variable is banded, it will standardly be added to the DataSet via the
original’s name suffixed with 'banded', e.g. 'age_banded', keeping
the originating variables text label. The new_name and label
parameters can be used to create custom variable names and labels. The banding
of the incoming data is controlled with the bands argument that expects a
list containing int, tuples or dict, where each type is used for a
different kind of group definition.

Banding with int and tuple:

	Use an int to make a band of only one value

	Use a tuple to indicate (inclusive) group limits

	values text meta is infered

	Example: [0, (1, 10), (11, 14), 15, (16, 25)]

Banding with dict:

	The dict key will dicate the group’s text label meta

	The dict value can pick up an int / tuple (see above)

	Example: [{'A': 0}, {'B': (1, 10)}, {'C': (11, 14)}, {'D': 15}, {'E': (16, 25)}]

	Mixing allowed: [0, {'A': (1, 10)}, (11, 14), 15, {'B': (16, 25)}]

For instance, we could band 'age' into a new variable called 'grouped_age'
with bands being:

>>> bands = [{'Younger than 35': (19, 34)},
... (35, 39),
... {'Exactly 40': 40},
... 41,
... (42, 60)]

>>> ds.band(name='age', bands=bands, new_name='grouped_age', label=None)

>>> ds.meta('grouped_age')
single codes texts missing
grouped_age: Age
1 1 Younger than 35 None
2 2 35-39 None
3 3 Exactly 40 None
4 4 41 None
5 5 42-60 None

>>> ds.crosstab('age', 'grouped_age')
Question grouped_age. Age
Values All Younger than 35 35-39 Exactly 40 41 42-60
Question Values
age. Age All 8255 4308 1295 281 261 2110
 19 245 245 0 0 0 0
 20 277 277 0 0 0 0
 21 270 270 0 0 0 0
 22 323 323 0 0 0 0
 23 272 272 0 0 0 0
 24 263 263 0 0 0 0
 25 246 246 0 0 0 0
 26 252 252 0 0 0 0
 27 260 260 0 0 0 0
 28 287 287 0 0 0 0
 29 270 270 0 0 0 0
 30 271 271 0 0 0 0
 31 264 264 0 0 0 0
 32 287 287 0 0 0 0
 33 246 246 0 0 0 0
 34 275 275 0 0 0 0
 35 258 0 258 0 0 0
 36 236 0 236 0 0 0
 37 252 0 252 0 0 0
 38 291 0 291 0 0 0
 39 258 0 258 0 0 0
 40 281 0 0 281 0 0
 41 261 0 0 0 261 0
 42 290 0 0 0 0 290
 43 267 0 0 0 0 267
 44 261 0 0 0 0 261
 45 257 0 0 0 0 257
 46 259 0 0 0 0 259
 47 243 0 0 0 0 243
 48 271 0 0 0 0 271
 49 262 0 0 0 0 262

Array transformations

Transposing arrays

DataSet offers tools to simplify common array variable operations.
You can switch the structure of items vs. values by producing the one
from the other using transpose(). The transposition of an array will always
result in items that have the delimited set type in the corresponding
'columns' metadata. That is because the transposed array is collecting
what former items have been assignd per former value:

>>> ds.transpose('q5')

Original

>>> ds['q5'].head()
 q5_1 q5_2 q5_3 q5_4 q5_5 q5_6
0 2 2 2 2 1 2
1 5 5 3 3 3 5
2 5 98 5 5 1 5
3 5 5 1 5 3 5
4 98 98 98 98 98 98

>>> ds.meta('q5')
single items item texts codes texts missing
q5: How likely are you to do each of the follow...
1 q5_1 Surfing 1 I would refuse if asked None
2 q5_2 Snowboarding 2 Very unlikely None
3 q5_3 Kite boarding 3 Probably wouldn't None
4 q5_4 Parachuting 4 Probably would if asked None
5 q5_5 Cave diving 5 Very likely None
6 q5_6 Windsurfing 97 I'm already planning to None
7 98 Don't know None

Transposition

>>> ds['q5_trans'].head()
 q5_trans_1 q5_trans_2 q5_trans_3 q5_trans_4 q5_trans_5 q5_trans_97 q5_trans_98
0 5; 1;2;3;4;6; NaN NaN NaN NaN NaN
1 NaN NaN 3;4;5; NaN 1;2;6; NaN NaN
2 5; NaN NaN NaN 1;3;4;6; NaN 2;
3 3; NaN 5; NaN 1;2;4;6; NaN NaN
4 NaN NaN NaN NaN NaN NaN 1;2;3;4;5;6;

>>> ds.meta('q5_trans')
delimited set items item texts codes texts missing
q5_trans: How likely are you to do each of the ...
1 q5_trans_1 I would refuse if asked 1 Surfing None
2 q5_trans_2 Very unlikely 2 Snowboarding None
3 q5_trans_3 Probably wouldn't 3 Kite boarding None
4 q5_trans_4 Probably would if asked 4 Parachuting None
5 q5_trans_5 Very likely 5 Cave diving None
6 q5_trans_97 I'm already planning to 6 Windsurfing None
7 q5_trans_98 Don't know

The method’s ignore_items and ignore_values arguments can pick up
items (indicated by their order number) and values to leave aside
during the transposition.

Ignoring items

The new values meta’s numerical codes will always be enumerated from 1 to
the number of valid items for the transposition, so ignoring items 2, 3 and 4
will lead to:

>>> ds.transpose('q5', ignore_items=[2, 3, 4])

>>> ds['q5_trans'].head(1)
 q5_trans_1 q5_trans_2 q5_trans_3 q5_trans_4 q5_trans_5 q5_trans_97 q5_trans_98
0 2; 1;3; NaN NaN NaN NaN NaN

>>> ds.values('q5_trans')
[(1, 'Surfing'), (2, 'Cave diving'), (3, 'Windsurfing')]

Ignoring values

>>> ds.transpose('q5', ignore_values=[1, 97])

>>> ds['q5_trans'].head(1)
 q5_trans_2 q5_trans_3 q5_trans_4 q5_trans_5 q5_trans_98
0 1;2;3;4;6; NaN NaN NaN NaN

>>> ds.items('q5_trans')
[('q5_trans_2', u'Very unlikely'),
 ('q5_trans_3', u"Probably wouldn't"),
 ('q5_trans_4', u'Probably would if asked'),
 ('q5_trans_5', u'Very likely'),
 ('q5_trans_98', u"Don't know")]

Ignoring both items and values

>>> ds.transpose('q5', ignore_items=[2, 3, 4], ignore_values=[1, 97])

>>> ds['q5_trans'].head(1)
 q5_trans_2 q5_trans_3 q5_trans_4 q5_trans_5 q5_trans_98
0 1;3; NaN NaN NaN NaN

>>> ds.meta('q5_trans')
delimited set items item texts codes texts missing
q5_trans: How likely are you to do each of the ...
1 q5_trans_2 Very unlikely 1 Surfing None
2 q5_trans_3 Probably wouldn't 2 Cave diving None
3 q5_trans_4 Probably would if asked 3 Windsurfing None
4 q5_trans_5 Very likely
5 q5_trans_98 Don't know

Flatten item answers

	flatten()

 Logic and set operaters

Logic and set operaters

Ranges

The frange() function takes a string of abbreviated ranges, possibly delimited
by a comma (or some other character) and extrapolates its full,
unabbreviated list of ints.

>>> from quantipy.core.tools.dp.prep import frange

Basic range:

>>> frange('1-5')
[1, 2, 3, 4, 5]

Range in reverse:

>>> frange('15-11')
[15, 14, 13, 12, 11]

Combination:

>>> frange('1-5,7,9,15-11')
[1, 2, 3, 4, 5, 7, 9, 15, 14, 13, 12, 11]

May include spaces for clarity:

>>> frange('1-5, 7, 9, 15-11')
[1, 2, 3, 4, 5, 7, 9, 15, 14, 13, 12, 11]

Complex logic

Multiple conditions can be combined using union or intersection set
statements. Logical mappers can be arbitrarily nested as long as they are
well-formed.

union

union takes a list of logical conditions that will be treated with
or logic.

Where any of logic_A, logic_B or logic_C are True:

>>> union([logic_A, logic_B, logic_C])

intersection

intersection takes a list of conditions that will be
treated with and logic.

Where all of logic_A, logic_B and logic_C are True:

>>> intersection([logic_A, logic_B, logic_C])

“List” logic

Instead of using the verbose has_any operator, we can express simple, non-nested
or logics simply as a list of codes. For example {"q1_1": [1, 2]} is an
example of list-logic, where [1, 2] will be interpreted as has_any([1, 2]),
meaning if q1_1 has any of the values 1 or 2.

q1_1 has any of the responses 1, 2 or 3:

>>> l = {"q1_1": [1, 2, 3]}

has_any

q1_1 has any of the responses 1, 2 or 3:

>>> l = {"q1_1": has_any([1, 2, 3])}

q1_1 has any of the responses 1, 2 or 3 and no others:

>>> l = {"q1_1": has_any([1, 2, 3], exclusive=True)}

not_any

q1_1 doesn’t have any of the responses 1, 2 or 3:

>>> l = {"q1_1": not_any([1, 2, 3])}

q1_1 doesn’t have any of the responses 1, 2 or 3 but has some others:

>>> l = {"q1_1": not_any([1, 2, 3], exclusive=True)}

has_all

q1_1 has all of the responses 1, 2 and 3:

>>> l = {"q1_1": has_all([1, 2, 3])}

q1_1 has all of the responses 1, 2 and 3 and no others:

>>> l = {"q1_1": has_all([1, 2, 3], exclusive=True)}

not_all

q1_1 doesn’t have all of the responses 1, 2 and 3:

>>> l = {"q1_1": not_all([1, 2, 3])}

q1_1 doesn’t have all of the responses 1, 2 and 3 but has some others:

>>> l = {"q1_1": not_all([1, 2, 3], exclusive=True)}

has_count

q1_1 has exactly 2 responses:

>>> l = {"q1_1": has_count(2)}

q1_1 has 1, 2 or 3 responses:

>>> l = {"q1_1": has_count([1, 3])}

q1_1 has 1 or more responses:

>>> l = {"q1_1": has_count([is_ge(1)])}

q1_1 has 1, 2 or 3 responses from the response group 5, 6, 7, 8 or 9:

>>> l = {"q1_1": has_count([1, 3, [5, 6, 7, 8, 9]])}

q1_1 has 1 or more responses from the response group 5, 6, 7, 8 or 9:

>>> l = {"q1_1": has_count([is_ge(1), [5, 6, 7, 8, 9]])}

not_count

q1_1 doesn’t have exactly 2 responses:

>>> l = {"q1_1": not_count(2)}

q1_1 doesn’t have 1, 2 or 3 responses:

>>> l = {"q1_1": not_count([1, 3])}

q1_1 doesn’t have 1 or more responses:

>>> l = {"q1_1": not_count([is_ge(1)])}

q1_1 doesn’t have 1, 2 or 3 responses from the response group 5, 6, 7, 8 or 9:

>>> l = {"q1_1": not_count([1, 3, [5, 6, 7, 8, 9]])}

q1_1 doesn’t have 1 or more responses from the response group 5, 6, 7, 8 or 9:

>>> l = {"q1_1": not_count([is_ge(1), [5, 6, 7, 8, 9]])}

Boolean slicers and code existence

any(), all()
code_count(), is_nan()

 Custom data recoding

Custom data recoding

The recode() method in detail

This function takes a mapper of {key: logic} entries and injects the
key into the target column where its paired logic is True. The logic
may be arbitrarily complex and may refer to any other variable or
variables in data. Where a pre-existing column has been used to
start the recode, the injected values can replace or be appended to
any data found there to begin with. Note that this function does
not edit the target column, it returns a recoded copy of the target
column. The recoded data will always comply with the column type
indicated for the target column according to the meta.

	method:

	recode(target, mapper, default=None, append=False,
intersect=None, initialize=None, fillna=None, inplace=True)

target

target controls which column meta should be used to control the
result of the recode operation. This is important because you cannot
recode multiple responses into a ‘single’-typed column.

The target column must already exist in meta.

The recode function is effectively a request to return a copy of
the target column, recoded as instructed. recode does not
edit the target column in place, it returns a recoded copy of it.

If the target column does not already exist in data then a new
series, named accordingly and initialized with np.NaN, will begin
the recode.

Return a recoded version of the column radio_stations_xb edited
based on the given mapper:

>>> recoded = recode(
... meta, data,
... target='radio_stations_xb',
... mapper=mapper
...)

By default, recoded data resulting from the the mapper will replace any
data already sitting in the target column (on a cell-by-cell basis).

mapper

A mapper is a dict of {value: logic} entries where value represents
the data that will be injected for cases where the logic is True.

Here’s a simplified example of what a mapper looks like:

>>> mapper = {
... 1: logic_A,
... 2: logic_B,
... 3: logic_C,
... }

1 will be generated where logic_A is True, 2 where logic_B is
True and 3 where logic_C is True.

The recode function, by referencing the type indicated by the meta,
will manage the complications involved in single vs delimited set
data.

>>> mapper = {
... 901: {'radio_stations': frange('1-13')},
... 902: {'radio_stations': frange('14-20')},
... 903: {'radio_stations': frange('21-25')}
... }

This means: inject 901 if the column radio_stations has any of the
values 1-13, 902 where radio_stations has any of the values 14-20
and 903 where radio_stations has any of the values 21-25.

default

If you had lots of values to generate from the same reference column
(say most/all of them were based on radio_stations) then we can
omit the wildcard logic format and use recode’s default parameter.

>>> recoded = recode(
... meta, data,
... target='radio_stations_xb',
... mapper={
... 901: frange('1-13'),
... 902: frange('14-20'),
... 903: frange('21-25')
... },
... default='radio_stations'
...)

This means, all unkeyed logic will default to be keyed to
radio_stations. In this case the three codes 901, 902 and 903 will
be generated based on the data found in radio_stations.

You can combine this with reference to other columns, but you can only
provide one default column.

>>> recoded = recode(
... meta, data,
... target='radio_stations_xb',
... mapper={
... 901: frange('1-13'),
... 902: frange('14-20'),
... 903: frange('21-25'),
... 904: {'age': frange('18-34')}
... },
... default='radio_stations'
...)

Given that logic can be arbitrarily complicated, mappers can be as
well. You’ll see an example of a mapper that recodes a segmentation
in Example 4, below.

append

If you want the recoded data to be appended to whatever may
already be in the target column (this is only applicable for ‘delimited
set’-typed columns), then you should use the append parameter.

>>> recoded = recode(
... meta, data,
... target='radio_stations_xb',
... mapper=mapper,
... append=True
...)

The precise behaviour of the append parameter can be seen in the
following examples.

Given the following data:

>>> df['radio_stations_xb']
1 6;7;9;13;
2 97;
3 97;
4 13;16;18;
5 2;6;
Name: radio_stations_xb, dtype: object

We generate a recoded value of 901 if any of the values 1-13 are
found. With the default append=False behaviour we will return the
following:

>>> target = 'radio_stations_xb'
>>> recode(meta, data, target, mapper)
1 901;
2 97;
3 97;
4 901;
5 901;
Name: radio_stations_xb, dtype: object

However, if we instead use append=True, we will return the following:

>>> target = 'radio_stations_xb'
>>> recode(meta, data, target, mapper, append=True)
1 6;7;9;13;901;
2 97;
3 97;
4 13;16;18;901;
5 2;6;901;
Name: radio_stations_xb, dtype: object

intersect

One way to help simplify complex logical conditions, especially when
they are in some way repetitive, is to use intersect, which
accepts any logical statement and forces every condition in the mapper
to become the intersection of both it and the intersect condition.

For example, we could limit our recode to males by giving a logical
condition to that effect to intersect:

>>> recoded = recode(
... meta, data,
... target='radio_stations_xb',
... mapper={
... 901: frange('1-13'),
... 902: frange('14-20'),
... 903: frange('21-25'),
... 904: {'age': frange('18-34')}
... },
... default='radio_stations',
... intersect={'gender': [1]}
...)

initialize

You may also initialize your copy of the target column as part of your
recode operation. You can initalize with either np.NaN (to overwrite
anything that may already be there when your recode begins) or by naming
another column. When you name another column a copy of the data from that
column is used to initialize your recode.

Initialization occurs before your recode.

>>> recoded = recode(
... meta, data,
... target='radio_stations_xb',
... mapper={
... 901: frange('1-13'),
... 902: frange('14-20'),
... 903: frange('21-25'),
... 904: {'age': frange('18-34')}
... },
... default='radio_stations',
... initialize=np.NaN
...)

>>> recoded = recode(
... meta, data,
... target='radio_stations_xb',
... mapper={
... 901: frange('1-13'),
... 902: frange('14-20'),
... 903: frange('21-25'),
... 904: {'age': frange('18-34')}
... },
... default='radio_stations',
... initialize='radio_stations'
...)

fillna

You may also provide a fillna value that will be used as per
pd.Series.fillna() after the recode has been performed.

>>> recoded = recode(
... meta, data,
... target='radio_stations_xb',
... mapper={
... 901: frange('1-13'),
... 902: frange('14-20'),
... 903: frange('21-25'),
... 904: {'age': frange('18-34')}
... },
... default='radio_stations',
... initialize=np.NaN,
... fillna=99
...)

Custom recode examples

Building a net code

Here’s an example of copying an existing question and recoding onto it a
net code.

Create the new metadata:

>>> meta['columns']['radio_stations_xb'] = copy.copy(
... meta['columns']['radio_stations']
...)
>>> meta['columns']['radio_stations_xb']['values'].append(
... {
... "value": 901,
... "text": {"en-GB": "NET: Listened to radio in past 30 days"}
... }
...)

Initialize the new column. In this case we’re starting with a copy of
the radio_stations column:

>>> data['radio_stations_xb'] = data['radio_stations'].copy()

Recode the new column by appending the code 901 to it as indicated
by the mapper:

>>> data['radio_stations_xb'] = recode(
... meta, data,
... target='radio_stations_xb',
... mapper={
... 901: {'radio_stations': frange('1-23, 92, 94, 141')}
... },
... append=True
...)

Check the result:

>>> data[['radio_stations', 'radio_stations_xb']].head(20)
 radio_stations radio_stations_cb
0 5; 5;901;
1 97; 97;
2 97; 97;
3 97; 97;
4 97; 97;
5 4; 4;901;
6 11; 11;901;
7 4; 4;901;
8 97; 97;
9 97; 97;
10 97; 97;
11 92; 92;901;
12 97; 97;
13 1;13;17; 1;13;17;901;
14 6; 6;901;
15 1;5;6;10; 1;5;6;10;901;
16 6; 6;901;
17 2;4;16; 2;4;16;901;
18 6;10; 6;10;901;
19 6; 6;901;

Create-and-fill

Here’s an example where the value 1 is generated based on some logic
and then all remaining cases are given the value 2 using the
pandas.Series.fillna() method.

Create the new metadata

>>> meta['columns']['age_xb'] = {
... 'type': 'single',
... 'text': {'en-GB': 'Age'},
... 'values': [
... {'value': 1, 'text': {'en-GB': '16-25'}},
... {'value': 2, 'text': {'en-GB': 'Others'}}
...]
... }

Initialize the new column:

>>> data['age_xb'] = np.NaN

Recode the new column:

>>> data['age_xb'] = recode(
... meta, data,
... target='age_xb',
... mapper={
... 1: {'age': frange('16-40')}
... }
...)

Fill all cases that are still empty with the value 2:

>>> data['age_xb'].fillna(2, inplace=True)

Check the result:

>>> data[['age', 'age_xb']].head(20)
 age age_grp_rc
0 22 1
1 68 2
2 32 1
3 44 2
4 33 1
5 52 2
6 54 2
7 44 2
8 62 2
9 49 2
10 64 2
11 73 2
12 43 2
13 28 1
14 66 2
15 39 1
16 51 2
17 50 2
18 77 2
19 42 2

Numerical banding

Here’s a typical example of recoding age into custom bands.

In this case we’re using list comprehension to generate the first ten
values objects and then concatenate that with a final ‘65+’ value object
which doesn’t folow the same label format.

Create the new metadata:

>>> meta['columns']['age_xb_1'] = {
... 'type': 'single',
... 'text': {'en-GB': 'Age'},
... 'values': [
... {
... 'value': i,
... 'text': {'en-GB': '{}-{}'.format(r[0], r[1])}
... }
... for i, r in enumerate(
... [
... [18, 20],
... [21, 25], [26, 30],
... [31, 35], [36, 40],
... [41, 45], [46, 50],
... [51, 55], [56, 60],
... [61, 65]
...],
... start=1
...)
...] + [
... {
... 'value': 11,
... 'text': {'en-GB': '65+'}
... }
...]
... }

Initialize the new column:

>>> data['age_xb_1'] = np.NaN

Recode the new column:

>>> data['age_xb_1'] = recode(
... meta, data,
... target='age_xb_1',
... mapper={
... 1: frange('18-20'),
... 2: frange('21-25'),
... 3: frange('26-30'),
... 4: frange('31-35'),
... 5: frange('36-40'),
... 6: frange('41-45'),
... 7: frange('46-50'),
... 8: frange('51-55'),
... 9: frange('56-60'),
... 10: frange('61-65'),
... 11: frange('66-99')
... },
... default='age'
...)

Check the result:

>>> data[['age', 'age_xb_1']].head(20)
 age age_cb
0 22 2
1 68 11
2 32 4
3 44 6
4 33 4
5 52 8
6 54 8
7 44 6
8 62 10
9 49 7
10 64 10
11 73 11
12 43 6
13 28 3
14 66 11
15 39 5
16 51 8
17 50 7
18 77 11
19 42 6

Complicated segmentation

Here’s an example of using a complicated, nested series of logic
statements to recode an obscure segmentation.

The segemenation was given with the following definition:

1 - Self-directed:

	If q1_1 in [1,2] and q1_2 in [1,2] and q1_3 in [3,4,5]

2 - Validators:

	If q1_1 in [1,2] and q1_2 in [1,2] and q1_3 in [1,2]

3 - Delegators:

	If (q1_1 in [3,4,5] and q1_2 in [3,4,5] and q1_3 in [1,2])

	Or (q1_1 in [3,4,5] and q1_2 in [1,2] and q1_3 in [1,2])

	Or (q1_1 in [1,2] and q1_2 in [3,4,5] and q1_3 in [1,2])

4 - Avoiders:

	If (q1_1 in [3,4,5] and q1_2 in [3,4,5] and q1_3 in [3,4,5])

	Or (q1_1 in [3,4,5] and q1_2 in [1,2] and q1_3 in [3,4,5])

	Or (q1_1 in [1,2] and q1_2 in [3,4,5] and q1_3 in [3,4,5])

5 - Others:

	Everyone else.

Create the new metadata:

>>> meta['columns']['segments'] = {
... 'type': 'single',
... 'text': {'en-GB': 'Segments'},
... 'values': [
... {'value': 1, 'text': {'en-GB': 'Self-directed'}},
... {'value': 2, 'text': {'en-GB': 'Validators'}},
... {'value': 3, 'text': {'en-GB': 'Delegators'}},
... {'value': 4, 'text': {'en-GB': 'Avoiders'}},
... {'value': 5, 'text': {'en-GB': 'Other'}},
...]
... }

Initialize the new column?

>>> data['segments'] = np.NaN

Create the mapper separately, since it’s pretty massive!

See the Complex logic section for more information and examples
related to the use of union and intersection.

>>> mapper = {
... 1: intersection([
... {"q1_1": [1, 2]},
... {"q1_2": [1, 2]},
... {"q1_3": [3, 4, 5]}
...]),
... 2: intersection([
... {"q1_1": [1, 2]},
... {"q1_2": [1, 2]},
... {"q1_3": [1, 2]}
...]),
... 3: union([
... intersection([
... {"q1_1": [3, 4, 5]},
... {"q1_2": [3, 4, 5]},
... {"q1_3": [1, 2]}
...]),
... intersection([
... {"q1_1": [3, 4, 5]},
... {"q1_2": [1, 2]},
... {"q1_3": [1, 2]}
...]),
... intersection([
... {"q1_1": [1, 2]},
... {"q1_2": [3, 4, 5]},
... {"q1_3": [1, 2]}
...]),
...]),
... 4: union([
... intersection([
... {"q1_1": [3, 4, 5]},
... {"q1_2": [3, 4, 5]},
... {"q1_3": [3, 4, 5]}
...]),
... intersection([
... {"q1_1": [3, 4, 5]},
... {"q1_2": [1, 2]},
... {"q1_3": [3, 4, 5]}
...]),
... intersection([
... {"q1_1": [1, 2]},
... {"q1_2": [3, 4, 5]},
... {"q1_3": [3, 4, 5]}
...])
...])
... }

Recode the new column:

>>> data['segments'] = recode(
... meta, data,
... target='segments',
... mapper=mapper
...)

Note

Anything not at the top level of the mapper will not benefit from using
the default parameter of the recode function. In this case, for example,
saying default='q1_1' would not have helped. Everything in a nested level
of the mapper, including anything in a union or intersection list,
must use the explicit dict form {"q1_1": [1, 2]}.

 Weights

Weights

	Background and methodology
	The statistical problem

	Rim weighting concept

	Weight scheme setup
	Using the Rim class

	Target distributions

	Weight groups and filters

	Setting group targets

	Integration within DataSet
	Weighting and weighted aggregations

	The isolated weight dataframe

	Diagnostics
	The weighting efficiency

	Gotchas

 Background and methodology

Background and methodology

quantipy utilizes the Rim (sometimes also called Raking) weighting method,
an iterative fitting algorithm that tries to balance out multiple sample
frequencies simultaneously. It is rooted in the mathematical model developed in
the seminal academic paper by Deming/Stephan (1940) ([DeSt40]). The following chapters
draw heavily from it.

The statistical problem

More often than not, market research professionals (and not only them!) are
required to weight their raw data collected via a survey to match a known
specific real-world distribution. This is the case when you try to weight your
sample to reflect the population distribution of a certain characteristic to
make it “representative” in one or more terms. Leaving unconsidered what a
“representative” sample actually is in the first place, let’s see what
“weighting data” comes down to and why weighting in order to achieve representativeness
can be quite a difficult task. Look at the following two examples:

1. Your data contains an equal number of male and female respondents while in
the real world you know that women are a little bit more frequent than men.
In relative terms you have sampled 2 percentage points more men than women:

	
	Sample (N=100)

	Population

	Factors

	Men

	50 %

	48%

	48/50 = 0.96

	Women

	50%

	52%

	52/50 = 1.04

That one is easy because you know each cell’s population frequencies and can
simply find the factors that will correct your sample to mirror the real-world
population. To weight you would simply compute the relevant factors by dividing
the desired population figure by the sample frequency and assign each case in
your data the respective result (based on his or her gender). The factors are coming from
your one-dimensional weighting matrix above.

2. You have a survey project that requires the sample to match the gender and age
distributions in real-world Germany and additionally should take into account
the distribution of iPad owners and the population frequencies of the federal
states.

Again, to weight the data you would need to calculate the cell ratios of target
vs. sample figures for the different sample characteristics. While you may be
able to find the joint distribution of age categories by gender, you will
have a hard time coming up e.g. with the correct figures for a joint distribution
of iPad owners per federal state by gender and age group.

To put it differently: You will not know the population’s cell target figures
for all weighting dimensions in all relevant cells of the multi-dimensional
weighting matrix. Since you need this information to assign each case a weight
factor to come up with the correct weighted distributions for the four sample
characteristics you would not be able to weight the data.
To illustrate the complexity of such a weighting scheme, the table below should
suit:

╔═════════╦═════════╦═══════════════════════╦═══════════════════════╦═════╗
║ State: ║ ║ Bavaria ║ Saxony ║ ║
╠═════════╬═════════╬═══════╦═══════╦═══════╬═══════╦═══════╦═══════╬═════╣
║ Age: ║ ║ 18-25 ║ 26-35 ║ 36-55 ║ 18-25 ║ 26-35 ║ 36-55 ║ ... ║
╠═════════╬═════════╬═══╦═══╬═══╦═══╬═══╦═══╬═══╦═══╬═══╦═══╬═══╦═══╬═════╣
║ Gender: ║ ║ m ║ f ║ m ║ f ║ m ║ f ║ m ║ f ║ m ║ f ║ m ║ f ║ ... ║
╠═════════╬═════════╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═════╣
║ ║ iPad ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║
╠═════════╬═════════╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═════╣
║ ║ no iPad ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║ ? ║
╚═════════╩═════════╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═════╝

Note that you would also need to take into account the other joint distributions
of age by gender per federal state, iPad owners by age, and so on to get the
correct weight factors step by step: all cross-tabulation information for the
population that will not be available to you. Additionally, even if you would
have all the information necessary for your calculations, try to imagine the
amount of work that awaits to come up with the weight factors per cell
regarding getting all possible combinations right, then creating variables,
recoding those variables and then finally computing the ratios.

What is available regularly, however, is the distribution of people living in
Germany’s federal states and the distribution of iPad owners in general
(as per “Yes, have one,” “do not own one”), plus the age and gender frequencies.
This is where rim weighting comes into play.

Rim weighting concept

Rim weighting in short can be described as an iterative data fitting process
that aims to apply a weight factor to each respondent’s case record in order to
match the target figures by altering the sample cell frequencies relevant to the
weighting matrix. Doing that, it will find the single cell’s ratios that are required
to come up with the correct targets per weight dimension – it will basically estimate
all the joint distribution information that is unknown.

The way this works can be summarized as follows: For each interlocking cell
coming from all categories of all the variables that are given to weight to, an
algorithm will compute the proportion necessary in a single specific cell that,
when summed over per column or respectively by row, will result in a column (row)
total per category that matches the target distribution. However, it will occur
that having balanced a column total to match, the row totals will be off.
This is where one iteration ends and another one begins starting now with the
weighted values from the previous run. This iterative process will continue
until a satisfying result in terms of an acceptable low amount of mismatch
between produced sample results and weight targets is reached.

In short: Simultaneous adjustment of all weight variables with the smallest
amount of data manipulation possible while forcing the maximum match between
sample and weight scheme.

References

[DeSt40]
Deming, W. Edwards; Stephan, Frederick F. (1940): On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known. In: Ann. Math. Statist. 11 , no. 4, pp. 427 - 444.

 Weight scheme setup

Weight scheme setup

Using the Rim class

The Rim object’s purpose is to define the required setup of the weighting process, i.e. the weight scheme that should be used to compute the actual factor results per case in the dataset. While its main purpose is to provide a simple interface to structure weight schemes of all complexities, it also offers advanced options that control the underlying weighting algorithm itself and thus might impact the results.

To start working with a Rim object, we only need to think of a name for our scheme:

>>> scheme = qp.Rim('my_first_scheme')

Target distributions

A major and (probably the most important) step in specifying a weight scheme
is mapping the desired target population proportions to the categories of the related variables inside the data. This is done via a dict mapping.

For example, to equally weight female and male respondents in our sample, we
simply define:

>>> gender_targets = {}
>>> gender_targets['gender'] = {1: 50.0, 2: 50.0}
>>> gender_targets
{'gender': {1: 50.0, 2: 50.0}}

Since we are normally dealing with multiple variables at once, we collect
them in a list, adding other variables naturally in the same way:

>>> dataset.band('age', [(19, 25), (26-35), (36, 49)])
>>> age_targets = {'age_banded': {1: 45.0, 2: 29.78, 3: 25.22}}
>>> all_targets = [gender_targets, age_targets]

The set_targets() method can now use the all_targets list to apply the target distributions to the Rim weight scheme setup (we are also providing an optional name for our group of variables) .

>>> scheme.set_targets(targets=all_targets, group_name='basic weights')

The Rim instance also allows inspecting these targets from itself now (you can
see the group_name parameter reflected here, it would fall back to
'_default_name_' if none was provided):

>>> scheme.groups['basic weights']['targets']
[{'gender': {1: 50.0, 2: 50.0}}, {'age_banded': {1: 45.0, 2: 29.78, 3: 25.22}}]

Weight groups and filters

For more elaborate weight schemes, we are instead using the add_group() method
which is effectively a generalized version of set_targets() that supports
addressing subsets of the data by filtering. For example, differing target distributions (or even the scheme defining variables of interest) might be
required across several market segments or between survey periods.

We can illustrate this using the variable 'Wave' from the dataset:

>>> dataset.crosstab('Wave', text=True, pct=True)
Question Wave. Wave
Values @
Question Values
Wave. Wave All 100.0
 Wave 1 19.6
 Wave 2 20.2
 Wave 3 20.5
 Wave 4 19.8
 Wave 5 19.9

Let’s assume we want to use the original targets for the first three waves but
the remaining two waves need to reflect some changes in both gender and the age
distributions. We first define a new set of targets that should apply only to
the waves 4 and 5:

gender_targets_2 = {'gender': {1: 30.0, 2: 70.0}}
age_targets_2 = {'age_banded': {1: 35.4, 2: 60.91, 3: 3.69}}
all_targets_2 = [gender_targets_2, age_targets_2]

We then set the filter expressions for the respective subsets of the data, as per:

>>> filter_wave1 = 'Wave == 1'
>>> filter_wave2 = 'Wave == 2'
>>> filter_wave3 = 'Wave == 3'
>>> filter_wave4 = 'Wave == 4'
>>> filter_wave5 = 'Wave == 5'

And add our weight specifications accordingly:

>>> scheme = qp.Rim('my_complex_scheme')
>>> scheme.add_group(name='wave 1', filter_def=filter_wave1, targets=all_targets)
>>> scheme.add_group(name='wave 2', filter_def=filter_wave2, targets=all_targets)
>>> scheme.add_group(name='wave 3', filter_def=filter_wave3, targets=all_targets)
>>> scheme.add_group(name='wave 4', filter_def=filter_wave4, targets=all_targets_2)
>>> scheme.add_group(name='wave 5', filter_def=filter_wave5, targets=all_targets_2)

Note

For historical reasons, the logic operators currently do not work within the Rim module. This means that all filter definitions need to be valid
string expressions suitable for the pandas.DataFrame.query() method [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.query.html].
We are planning to abandon this limitation as soon as possible to enable
easier and more complex filters that are consistent with the rest of the library.

 Diagnostics

Diagnostics

We did not yet take a look at the default weight report that offers some
additional information on the weighting outcome results and the even the
algorithm process itself (the report lists the internal weight variable name
that is always just a suffix of the scheme name):

Weight variable weights_my_complex_scheme
Weight group wave 1 wave 2 wave 3 wave 4 wave 5
Weight filter Wave == 1 Wave == 2 Wave == 3 Wave == 4 Wave == 5
Total: unweighted 1621.000000 1669.000000 1689.000000 1637.000000 1639.000000
Total: weighted 1651.000000 1651.000000 1651.000000 1651.000000 1651.000000
Weighting efficiency 74.549628 78.874120 77.595143 53.744060 50.019937
Iterations required 13.000000 8.000000 11.000000 12.000000 10.000000
Mean weight factor 1.018507 0.989215 0.977501 1.008552 1.007322
Minimum weight factor 0.513928 0.562148 0.518526 0.053652 0.050009
Maximum weight factor 2.243572 1.970389 1.975681 2.517704 2.642782
Weight factor ratio 4.365539 3.505106 3.810189 46.926649 52.846124

The weighting efficiency

After all, getting the sample to match to the desired
population proportions always comes at a cost. This cost is captured in a
statistical measure called the weighting efficiency and is featured in the report
as well. It is a metric for evaluation of the sample vs. targets match, i.e.
the sample balance compared to the weight scheme. You can also inversely
view it as the amount of distortion that was needed to arrive at the weighted
figures, that is, how much the data is manipulated by the weighting. A low
efficiency indicates a larger bias introduced by the weights.

Let \(w\) denote our weight vector containing the factor for each \(i\)
respondent, then the mathematical definititon of the (total) weighting
efficiency \(we\) is:

\[we = \frac{\frac{[\sum{w_i}]^2}{\sum i}}{\sum{w_i^2}} * 100\]

Which is the quotient of the squared sum of weights and the number of cases
divided by the sum of squared weights (expressed as a percentage).

We can manually check the figure for group 'wave 1'. We first recreate the
filter that has been used, which we can also derive the number of cases n from:

>>> f = dataset.take({'Wave': [1]})
>>> n = len(f)
>>> n
1621

The sum of weights squared sws is then:

>>> sws = (dataset[f, 'weights_new'].sum()) ** 2
>>> sws
2725801.0

And the sum of squared weights ssw:

>>> ssw = (dataset[f, 'weights_new']**2).sum()
>>> ssw
2255.61852968

Which enables us to calculate the weighting efficiency we as per:

>>> we = (sws / n) / ssw * 100
>>> we
74.5496275503

Generally, weighting efficiency results below the 80% mark indicate a high sample
vs. population mismatch. Dropping below 70% should be a reason to reexamine the
weight scheme specifications or analysis design.

To better understand why the weighting efficiency is good for judging the quality
of the weighting, we can look at its relation to the effective sample size
(the effective base). In our example, the effective base of the weight group would
be around 0.75 * 1621 = 1215.75. This means that we are dealing with an effective
sample of only 1216 cases for weighted statistical analysis and inference. In other
words, the weighting reduces the reliability of the sample as if we had sampled
roughly 400 (about 25%) respondents less.

Gotchas

[A] Subsets and targets

In the example we have defined five weight groups, one for each of the waves, although we only had two differing sets of targets we wanted to match. One could be
tempted to only set two weight groups because of this, using the filters:

>>> f1 = 'Wave in [1, 2, 3]'

and

>>> f2 = 'Wave in [4, 5]'

It is crucial to remember that the algorithm is applied on the weight group’s
overall data base, i.e. the above definition would achieve the targets inside
the two groups (Waves 1/2/3 and Waves 4/5) and not within each of the
waves.

 Batch

Batch

qp.Batch is a subclass of qp.DataSet and is a container for
structuring a qp.Link collection’s specifications.

qp.Batch is not only a subclass of qp.DataSet, it also takes a
DataSet instance as input argument, inheriting a few of its attributes, e.g.
_meta, _data, valid_tks and text_key.
All other Batch attributes are used as construction plans for populating a
qp.Stack, these get stored in the belonging DataSet meta component in
_meta['sets']['batches'][batchname].

In general, it does not matter in which order Batch attributes are set by
methods, the class ensures that all attributes are kept consistent.

All next sections are working with the following qp.DataSet instance:

import quantipy as qp

dataset = qp.DataSet('Example Data (A)')
dataset.read_quantipy('Example Data (A).json', 'Example Data (A).csv')

The json and csv files you can find in quantipy/tests.

	Creating/ Loading a qp.Batch instance

	Adding variables to a qp.Batch instance
	x-keys and y-keys

	Arrays

	Verbatims/ open ends

	Special aggregations

	Set properties of a qp.Batch
	Filter, weights and significance testing

	Cell items and language

	Inherited qp.DataSet methods

 Creating/ Loading a qp.Batch instance

Creating/ Loading a qp.Batch instance

As mentioned, a Batch instance has a close connection to its belonging
DataSet instance and we can easily create a new Batch from a DataSet
as per:

batch1 = dataset.add_batch(name='batch1')
batch2 = dataset.add_batch(name='batch2', ci=['c'], weights='weight')

It is also possible to load an already existing instance out of the meta
stored in dataset._meta['sets']['batches']:

batch = dataset.get_batch('batch1')

Both methods, .add_batch() and .get_batch(), are an easier way to
use the __init__() method of qp.Batch.

An other way to get a new qp.Batch instance is to copy an existing one, in
that case all added open ends are removed from the new instance:

copy_batch = batch.copy('copy_of_batch1')

 Adding variables to a qp.Batch instance

Adding variables to a qp.Batch instance

x-keys and y-keys

The included variables in a Batch constitute the main structure for the
qp.Stack construction plan. Variables can be added as x-keys or y-keys, for
arrays all belonging items are automatically added and the qp.Stack gets
populated with all cross-tabulations of these keys:

>>> batch.add_x(['q1', 'q2', 'q6'])
>>> batch.add_y(['gender', 'q1'])
Array summaries setup: Creating ['q6'].

x-specific y-keys can be produced by manipulating the main y-keys, this edit
can be extending or replacing the existing keys:

>>> batch.extend_y(['locality', 'ethnicity'], on=['q1'])
>>> batch.replace_y(['locality', 'ethnicity'], on=['q2'])

With these settings the construction plan looks like that:

>>> print batch.x_y_map
OrderedDict([('q1', ['@', 'gender', 'q1', 'locality', 'ethnicity']),
 ('q2', ['locality', 'ethnicity']),
 ('q6', ['@']),
 (u'q6_1', ['@', 'gender', 'q1']),
 (u'q6_2', ['@', 'gender', 'q1']),
 (u'q6_3', ['@', 'gender', 'q1'])])

Arrays

A special case exists if the added variables contain arrays. As default for all
arrays in x-keys array summaries are created (array as x-key and '@'-referenced total as
y-key), see the output below (Array summaries setup: Creating ['q6'].).
If array summaries are requested only for a selection of variables or for none,
use .make_summaries():

>>> batch.make_summaries(None)
Array summaries setup: Creating no summaries!

Arrays can also be transposed ('@'-referenced total as x-key and array name
as y-key). If they are not in the batch summary list before, they are
automatically added and depending on the replace parameter only the
transposed or both types of summaries are added to the qp.Stack:

>>> batch.transpose_array('q6', replace=False)
Array summaries setup: Creating ['q6'].

The construction plan now shows that both summary types are included:

>>> print batch.x_y_map
OrderedDict([('q1', ['@', 'gender', 'q1', 'locality', 'ethnicity']),
 ('q2', ['locality', 'ethnicity']),
 ('q6', ['@']),
 ('@', ['q6']),
 (u'q6_1', ['@', 'gender', 'q1']),
 (u'q6_2', ['@', 'gender', 'q1']),
 (u'q6_3', ['@', 'gender', 'q1'])])

Verbatims/ open ends

Another special case are verbatims. They will not be aggregated in a qp.Stack,
but they have to be defined in a qp.Batch to add them later to a qp.Cluster.

There are two different ways to add verbatims: Either all to one qp.Cluster
key or each gets its own key. But both options can be done with the same method.

For splitting the verbatims, set split=True and insert as many titles as
included verbatims/ open ends:

>>> batch.add_open_ends(['q8a', 'q9a'], break_by=['record_number', 'age'],
 split=True, title=['oe_q8', 'oe_q9'])

For collecting all verbatims in one Cluster key, set split=False and add
only one title or use the default parameters:

>>> batch.add_open_ends(['q8a', 'q9a'], break_by=['record_number', 'age'])

Special aggregations

It is possible to add some special aggregations to a qp.Batch, that are
not stored in the main construction plan .x_y_map. One option is to give a
name for a Cluster key in which all y-keys are cross-tabulated against each
other:

>>> batch.add_y_on_y('y-keys')

Another possibility is to add a qp.Batch instance to an other instance.
The added Batch loses all information about verbatims and .y_on_y, that
means only the main construction plan in .x_y_map gets adopted. Each of
the two batches is aggregated discretely in the qp.Stack, but the added
instance gets included into the qp.Cluster of the first qp.Batch in
a key named by its instance name.

>>> batch1 = dataset.get_batch('batch1')
>>> batch2 = dataset.get_batch('batch2')
>>> batch2.add_x('q2b')
Array summaries setup: Creating no summaries!
>>> batch2.add_y('gender')
>>> batch2.as_addition('batch1')
Batch 'batch2' specified as addition to Batch 'batch1'. Any open end summaries and 'y_on_y' agg. have been removed!

The connection between the two qp.Batch instances you can see in .additional
for the added instance and in ._meta['sets']['batches']['batchname']['additions']
for the first instance.

 Set properties of a qp.Batch

Set properties of a qp.Batch

The section before explained how the main construction plan (batch.x_y_map)
is built, that describes which x-keys and y-keys are used to add qp.Links
to a qp.Stack. Now you will get to know how the missing information for the
Links are defined and which specific views get extracted for the
qp.Cluster by adding some property options the qp.Batch instance.

Filter, weights and significance testing

qp.Links can be added to a qp.Stack data_key-level by defining its x
and y-keys, which is already done in .x_y_map, and setting a filter.
This property can be edited in a qp.Batch instance with the
following methods:

>>> batch.add_filter('men only', {'gender': 1})
>>> batch.extend_filter({'q1': {'age': [20, 21, 22, 23, 24, 25]}})

Filters can be added globally or for a selection of x-keys only. Out of the
global filter, .sample_size is automatically calculated for each qp.Batch
defintion.

Now all information are collected in the qp.Batch instance and the Stack
can be populated with Links in form of stack[data_key][filter_key][x_key][y_key].

For each Link qp.Views can be added, these views depend on a weight
definition, which is also defined in the qp.Batch:

>>> batch.set_weights(['weight_a'])

Significance tests are a special View; the sig. levels which they are
calculated on can be added to the qp.Batch like this:

>>> batch.set_sigtests(levels=[0.05])

Cell items and language

As qp.Stack is a container for a large amount of aggregations, it will
accommodate various qp.Views. The qp.Batch property .cell_items is
used to define which specfic Views will be taken to create a qp.Cluster:

>>> batch.set_cell_items(['c', 'p'])

The property .language allows the user to define which text labels from
the meta data should be used for the extracted Views by entering a valid
text key:

>>> batch.set_language('en-GB')

 Inherited qp.DataSet methods

Inherited qp.DataSet methods

Being a qp.DataSet subclasss, qp.Batch inherits some of its methods.
The important ones are these which allow the manipulation of the meta component.
That means meta-edits can be applied globally (run methods on qp.DataSet) or
Batch-specific (run methods on qp.Batch). Batch meta-edits
always overwrite global meta-edits and while building a qp.Cluster from a
qp.Batch, the modified meta information is taken from .meta_edits.

The following methods can be used to create meta-edits for a qp.Batch:

>>> batch.hiding('q1', [2], axis='y')
>>> batch.sorting('q2', fix=[97, 98])
>>> batch.slicing('q1', [1, 2, 3, 4, 5], axis='x')
>>> batch.set_variable_text('gender', 'Gender???')
>>> batch.set_value_texts('gender', {1: 'Men', 2: 'Women'})
>>> batch.set_property('q1', 'base_text', 'This var has a second filter.')

Some methods are not allowed to be used for a Batch. These will raise a
NotImplementedError to prevent inconsistent case and meta data states.

 Analysis & aggregation

Analysis & aggregation

	Collecting aggregations
	What is a qp.Link?

	Populating a qp.Stack

	The computational engine

	Significance testing

	View aggregation
	Basic views

	Non-categorical variables

	Descriptive statistics

	Nets
	Net definitions

	Calculations

	Cumulative sums

	Significance tests

 Collecting aggregations

Collecting aggregations

All computational results are collected in a so-called qp.Stack object which
acts as a container for large amount of aggregations in form of qp.Links.

What is a qp.Link?

A qp.Link is defined by four attributes that make it unique and set how it is
stored in a qp.Stack. These four attributes are data_key, filter,
x (downbreak) and y (crossbreak), which are positioned in a qp.Stack
similar to a tree diagram:

	Each Stack can have various data_keys.

	Each data_key can have various filters.

	Each filter can have various xs.

	Each x can have various ys.

Consequently qp.Stack[dk][filter][x][y] is one qp.Link that can be added
using add_link(self, data_keys=None, filters=['no_filter'], x=None, y=None, ...)

qp.Links are are storing different qp.Views (frequencies, statistics,
etc. - all kinds of computations) that are applied on the same four data attributes.

Populating a qp.Stack

A qp.Stack is able to cope with a large amount of aggregations, so it is
impractical to add Links one by one with repeated Stack.add_link() calls.
It is much easier to create a “construction plan” using a qp.Batch and
apply the settings saved in DataSet._meta['sets']['batches'] to populate a
qp.Stack instance. In the following, let’s assume dataset is containing
the definitions of two qp.Batches, a qp.Stack can be created running:

stack = dataset.populate(batches='all')

For the Batch definitions from here, you
will get the following construction plans:

>>> batch1 = dataset.get_batch('batch1')
>>> batch1.add_y_on_y('y_keys')

>>> print batch1.x_y_map
OrderedDict([('q1', ['@', 'gender', 'q1', 'locality', 'ethnicity']),
 ('q2', ['locality', 'ethnicity']),
 ('q6', ['@']),
 ('@', ['q6']),
 (u'q6_1', ['@', 'gender', 'q1']),
 (u'q6_2', ['@', 'gender', 'q1']),
 (u'q6_3', ['@', 'gender', 'q1'])])

>>> print batch1.x_filter_map
OrderedDict([('q1', {'(men only)+(q1)': (<function _intersection at 0x0000000019AE06D8>, [{'gender': 1}, {'age': [20, 21, 22, 23, 24, 25]}])}),
 ('q2', {'men only': {'gender': 1}}),
 ('q6', {'men only': {'gender': 1}}),
 ('q6_1', {'men only': {'gender': 1}}),
 ('q6_2', {'men only': {'gender': 1}}),
 ('q6_3', {'men only': {'gender': 1}})])

>>> batch2 = dataset.get_batch('batch2')

>>> print batch2.x_y_map
OrderedDict([('q2b', ['@', 'gender'])])

>>> print batch2.x_filter_map
OrderedDict([('q2b', 'no_filter')])

As both Batches refer to the same data file, the same data_key (in this
case the name of dataset) is defining all Links.

After populating the Stack content can be viewed using .describe():

>>> stack.describe()
 data filter x y view #
0 Example Data (A) men only q1 q1 NaN 1
1 Example Data (A) men only q1 @ NaN 1
2 Example Data (A) men only q1 gender NaN 1
3 Example Data (A) men only @ q6 NaN 1
4 Example Data (A) men only q2 ethnicity NaN 1
5 Example Data (A) men only q2 locality NaN 1
6 Example Data (A) men only q6_1 q1 NaN 1
7 Example Data (A) men only q6_1 @ NaN 1
8 Example Data (A) men only q6_1 gender NaN 1
9 Example Data (A) men only q6_2 q1 NaN 1
10 Example Data (A) men only q6_2 @ NaN 1
11 Example Data (A) men only q6_2 gender NaN 1
12 Example Data (A) men only q6_3 q1 NaN 1
13 Example Data (A) men only q6_3 @ NaN 1
14 Example Data (A) men only q6_3 gender NaN 1
15 Example Data (A) men only gender q1 NaN 1
16 Example Data (A) men only gender @ NaN 1
17 Example Data (A) men only gender gender NaN 1
18 Example Data (A) men only q6 @ NaN 1
19 Example Data (A) (men only)+(q1) q1 q1 NaN 1
20 Example Data (A) (men only)+(q1) q1 @ NaN 1
21 Example Data (A) (men only)+(q1) q1 locality NaN 1
22 Example Data (A) (men only)+(q1) q1 ethnicity NaN 1
23 Example Data (A) (men only)+(q1) q1 gender NaN 1
24 Example Data (A) no_filter q2b @ NaN 1
25 Example Data (A) no_filter q2b gender NaN 1

You can find all combinations defined in the x_y_map in the
Stack structure, but also Links like Stack['Example Data (A)']['men only']['gender']['gender']
are included. These special cases arising from the y_on_y setting. Sometimes
it is helpful to group a describe-dataframe and create a cross-tabulation
of the four Link attributes to get a better overview, e.g. to see how many
Links are included for each x-filter combination.
:

>>> stack.describe('x', 'filter')
filter (men only)+(q1) men only no_filter
x
@ NaN 1.0 NaN
gender NaN 3.0 NaN
q1 5.0 3.0 NaN
q2 NaN 2.0 NaN
q2b NaN NaN 2.0
q6 NaN 1.0 NaN
q6_1 NaN 3.0 NaN
q6_2 NaN 3.0 NaN
q6_3 NaN 3.0 NaN

 The computational engine

The computational engine

 Significance testing

Significance testing

 View aggregation

View aggregation

All following examples are working with a qp.Stack that was populated
from a qp.DataSet including the following qp.Batch definitions:

>>> batch1 = dataset.get_batch('batch1')
>>> batch1.add_y_on_y('y_keys')

>>> print batch1.x_y_map
OrderedDict([('q1', ['@', 'gender', 'q1', 'locality', 'ethnicity']),
 ('q2', ['locality', 'ethnicity']),
 ('q6', ['@']),
 ('@', ['q6']),
 (u'q6_1', ['@', 'gender', 'q1']),
 (u'q6_2', ['@', 'gender', 'q1']),
 (u'q6_3', ['@', 'gender', 'q1'])])

>>> print batch1.x_filter_map
OrderedDict([('q1', {'(men only)+(q1)': (<function _intersection at 0x0000000019AE06D8>, [{'gender': 1}, {'age': [20, 21, 22, 23, 24, 25]}])}),
 ('q2', {'men only': {'gender': 1}}),
 ('q6', {'men only': {'gender': 1}}),
 ('q6_1', {'men only': {'gender': 1}}),
 ('q6_2', {'men only': {'gender': 1}}),
 ('q6_3', {'men only': {'gender': 1}})])

>>> print batch1.weights
['weight_a']

>>> batch2 = dataset.get_batch('batch2')

>>> print batch2.x_y_map
OrderedDict([('q2b', ['@', 'gender'])])

>>> print batch2.x_filter_map
OrderedDict([('q2b', 'no_filter')])

>>> print batch2.weights
['weight']

Basic views

It is possible to add various qp.Views to a Link. This can be performed
by running Stack.add_link() providing View objects via the view parameter.
Alternatively, the qp.Batch definitions that are stored in the meta data
help to add basic Views (counts, percentages, bases and sums). By simply
running Stack.aggregate() we can easily add a large amount of aggregations
in one step.

Note

Stack.aggregate() can only be used with pre-populated Stacks!
(see DataSet.populate()).

 Builds

Builds

	Combining results
	Organizing View aggregations

	Creating Chain aggregations

	Deriving post aggregation results
	Summarizing and reducing results

	Custom calculations

 Combining results

Combining results

Organizing View aggregations

Text

Creating Chain aggregations

Text

 Deriving post aggregation results

Deriving post aggregation results

Summarizing and reducing results

Text on join() and cut()

Custom calculations

Text

 API references

